Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3254))

Abstract

While the feature size of integrated circuits decreases with every technology node, the impact of interconnect delay on the total delay increases. Thus, minimizing the wirelength becomes one of the most important tasks in physical design of high performance circuits.

In this paper we present a 3-D design flow for vertical integrated circuits. Our floorplanning and placement results show reductions of both total wirelength and lengths of the longest nets up to 50%. Thus, we demonstrate the capability of significant interconnect delay reduction using vertical integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ITRS: The international technology roadmap for semiconductors (2001), http://public.itrs.net/Files/2001ITRS/Home.htm

  2. Banerjee, K., Souri, S.J., Kapur, P., Saraswat, K.C.: 3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration. Proc. of the IEEE 89, 602–633 (2001)

    Article  Google Scholar 

  3. Ramm, P., Bonfert, D., Gieser, H., Haufe, J., Iberl, F., Klumpp, A., Kux, A., Wieland, R.: InterChip Via technology for vertical system integration. In: Proc. IITC, pp. 160–162 (2001)

    Google Scholar 

  4. Kleiner, M.B., Kühn, S.A., Ramm, P., Weber, W.: Thermal analysis of vertically integrated circuits. In: Proc. IEDM, pp. 487–490 (1995)

    Google Scholar 

  5. INFCC200208.133e: Infineon presents SOLID, a world first 3D chip integration technology. Press Release (2002)

    Google Scholar 

  6. Das, S., Chandrakasan, A., Reif, R.: Design tools for 3-D integrated circuits. In: Proc. ASPDAC, pp. 53–56 (2003)

    Google Scholar 

  7. Deng, Y., Maly, W.P.: Interconnect characteristics of 2.5-D system integration scheme. In: Proc. ISPD, pp. 171–175 (2001)

    Google Scholar 

  8. Deng, Y., Maly, W.P.: Physical design of the ”2.5D” stacked system. In: Proc. ICCD, pp. 211–217 (2003)

    Google Scholar 

  9. Enbody, R.J., Lynn, G., Tan, K.H.: Routing the 3-D chip. In: Proc. DAC, pp. 132–137 (1991)

    Google Scholar 

  10. Goplen, B., Sapatnekar, S.: Efficient thermal placement of standard cells in 3D ICs using a force directed approach. In: Proc. ICCAD, pp. 86–89 (2003)

    Google Scholar 

  11. Ohmura, M.: An initial placement algorithm for 3-D VLSI. In: Proc. ISCS, vol. 6, pp. 195–198 (1998)

    Google Scholar 

  12. Tanprasert, T.: An analytical 3-D placement that reserves routing space. In: Proc. ISCAS, vol. 3, pp. 69–72 (2000)

    Google Scholar 

  13. Wong, D., Liu, C.: A new algorithm for floorplan design. In: Proc. DAC, pp. 101–107 (1986)

    Google Scholar 

  14. Holland, J.: Adaption in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)

    MATH  Google Scholar 

  15. Cohoon, J., Hegde, S., Martin, W., Richards, D.: Floorplan design using distributed genetic algorithms. In: Proc. ICCAD, pp. 452–455 (1988)

    Google Scholar 

  16. Rebaudengo, M., Reorda, M.: Gallo: A genetic algorithm for floorplan area optimization. IEEE Trans. CAD 15, 943–951 (1996)

    Google Scholar 

  17. Lin, C., Chen, D., Wang, Y.: An efficient genetic algorithm for slicing floorplan area optimization. In: Proc. ISCAS, vol. 2, pp. 879–882 (2002)

    Google Scholar 

  18. Guo, P., Cheng, C., Yoshimura, T.: An o-tree representation of non-slicing floorplan and its applications. In: Proc. DAC, pp. 268–273 (1999)

    Google Scholar 

  19. Murata, H., Kuh, E.: Sequence-pair based placement method for hard/soft/preplaced modules. In: Proc. ISPD, pp. 167–172 (1998)

    Google Scholar 

  20. Hong, X., Huang, G., Cai, Y., Gu, J., Dong, S., Cheng, C., Gu, J.: Corner block list: An effective and efficient topological representation of non-slicing floorplan. In: Proc. ICCAD, pp. 8–12 (2000)

    Google Scholar 

  21. Eisenmann, H., Johannes, F.M.: Generic global placement and floorplanning. In: Proc. DAC, pp. 269–274 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaya, I., Salewski, S., Olbrich, M., Barke, E. (2004). Wirelength Reduction Using 3-D Physical Design. In: Macii, E., Paliouras, V., Koufopavlou, O. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2004. Lecture Notes in Computer Science, vol 3254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30205-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30205-6_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23095-3

  • Online ISBN: 978-3-540-30205-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics