Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3258))

Abstract

Cardinality matrix problems are the underlying structure of several real world problems such as rostering, sports scheduling , and timetabling. These are hard computational problems given their inherent combinatorial structure. Constraint based approaches have been shown to outperform other approaches for solving these problems. In this paper we propose the cardinality matrix constraint, a specialized global constraint for cardinality matrix problems. The cardinality matrix constraint takes advantage of the intrinsic structure of the cardinality matrix problems. It uses a global cardinality constraint per row and per column and one cardinality (0,1)-matrix constraint per symbol. This latter constraint corresponds to solving a special case of a network flow problem, the transportation problem, which effectively captures the interactions between rows, columns, and symbols of cardinality matrix problems. Our results show that the cardinality matrix constraint outperforms standard constraint based formulations of cardinality matrix problems.

Supported by the Intelligent Information Systems Institute, Cornell University (AFOSR grant F49620-01-1-0076) and EOARD grant FA8655-03-1-3022.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  2. Berge, C.: Graphe et Hypergraphes. Dunod, Paris (1970)

    Google Scholar 

  3. DinchaK, M., Simonis, H., Van Hentenryck, P.: Solving the car-sequencing problem in constraint logic programming. In: ECAI 1988, proceedings of the European Conference on Artificial Intelligence, pp. 290–295 (1988)

    Google Scholar 

  4. Dotu, I., del Val, A., Cehrian, M.: Redundant modeling for the quasigroup completion problem. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 288–302. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Easton, K., Ncmhauscr, G., Trick, M.: Sports scheduling. In: Leung, J. (ed.) Handbook of Scheduling: Models. Algorithms and Performance Analysis, CRC Press, Boca Raton (2004)

    Google Scholar 

  6. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  7. Gale, D.: A theorem on flows in networks. Pacific J. Math. 7, 1073–1082 (1957)

    MATH  MathSciNet  Google Scholar 

  8. Gomes, C., Regin, J.-C.: The alldiff matrix. Technical report, Intelligent Information Institute - Cornell University (2003)

    Google Scholar 

  9. Katricl, I., Thiel, S.: Fast bound consistency for the global cardinality constraint. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 437–451. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Kocjan, W., Kreuger, P.: Filtering methods for symmetric cardinality constraints. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 200–208. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Milano, M. (ed.): Constraint and Integer Programming: Toward a Unified Methodology. Kluwer, Dordrecht (2003)

    Google Scholar 

  12. Regfn, J.-C.: Generalized arc consistency for global cardinality constraint. In: Proceedings AAAI 1996, Portland, Oregon, pp. 209–215 (1996)

    Google Scholar 

  13. Ryser, H.: A combinatorial theorem with application to latin rectangles. Proa. Amec. Math. Soc. 2, 550–552 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ryser, H.: Combinatorial properties of matrices of zeros and ones. Canad. J. Math. 9, 371–377 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tarjan, R.: Depth-first search and linear graph algorithms. SI AM Journal of Computing 1, 146–160 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tarjan, R.: Data Structures and Network Algorithms. In: CBMS-XSF Regional Conference Series in Applied Mathematics (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Régin, JC., Gomes, C.P. (2004). The Cardinality Matrix Constraint . In: Wallace, M. (eds) Principles and Practice of Constraint Programming – CP 2004. CP 2004. Lecture Notes in Computer Science, vol 3258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30201-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30201-8_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23241-4

  • Online ISBN: 978-3-540-30201-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics