A Component Language for Hybrid Solver Cooperations

  • Eric Monfroy
  • Carlos Castro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3261)


In this paper, we use a simple component language to design solver cooperations for solving constrained optimisation problems. The cooperations we consider are hybrid: they use both complete and incomplete methods in order to take advantage of their respective assets. Our language enables us to carry out some more exotic cooperations than the usual “algorithmic” ones. We present some experimental results that show the benefits of such hybrid cooperations in terms of efficiency.


Local Search Output Port Constraint Programming Input Port Control Message 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apt, K.R.: Principles of Constraint Programming. Cambridge Univ. Press, Cambridge (2003)Google Scholar
  2. 2.
    Arbab, F.: Manifold 2.0 Reference Manual. CWI, The Netherlands (May 1997)Google Scholar
  3. 3.
    Castro, C., Monfroy, E., Ringeissen, C.: A Rule Language for Interaction. In: Apt, K.R., Fages, F., Rossi, F., Szeredi, P., Váncza, J. (eds.) CSCLP 2003. LNCS (LNAI), vol. 3010, pp. 154–170. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Habet, D., Li, C.-M., Devendeville, L., Vasquez, M.: A hybrid approach for SAT. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, p. 172. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Jussien, N., Lhomme, O.: Local search with constraint propagation and conflictbased heuristics. Artificial Intelligence (2002)Google Scholar
  6. 6.
    Monfroy, E., Castro, C.: Basic Components for Constraint Solver Cooperations. In: Proc. of ACM SAC 2003, ACM Press, New York (2003)Google Scholar
  7. 7.
    Monfroy, E., Saubion, F., Lambert, T.: On hybridization of local search and constraint propagation. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 299–313. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Papadopoulos, G.A., Arbab, F.: Coordination models and languages. In: Advances in Computers – The Engineering of Large Systems, vol. 46, pp. 329–400. Academic Press, London (1998)Google Scholar
  9. 9.
    Pesant, G., Gendreau, M.: A view of local search in constraint programming. In: Proc. of CP 1996, vol. 1118, Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, p. 417. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Solomon, M.: Algorithms for the vehicle routing and scheduling problem with time window constraints. Operations Research, 254–365 (1987)Google Scholar
  12. 12.
    Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Eric Monfroy
    • 1
  • Carlos Castro
    • 2
  1. 1.LINAUniversité de NantesFrance
  2. 2.Universidad Técnica Federico Santa MaríaValparaísoChile

Personalised recommendations