Provably Secure Authenticated Tree Based Group Key Agreement

  • Ratna Dutta
  • Rana Barua
  • Palash Sarkar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3269)


We present a provably secure authenticated tree based key agreement protocol. The protocol is obtained by combining Boldyreva’s multi-signature with Barua et al.’s unauthenticated ternary tree based multi-party extension of Joux’s key agreement protocol. The security is in the standard model as formalized by Bresson et al.. The proof is based on the techniques used by Katz and Yung in proving the security of their key agreement protocol.


group key agreement authenticated key agreement bilinear pairing provable security 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barreto, P.S.L.M., Kim, H.Y., Scott, M.: Efficient algorithms for pairingbased cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Barua, R., Dutta, R., Sarkar, P.: Extending Joux Protocol to Multi Party Key Agreement. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 205–217. Springer, Heidelberg (2003), Also available at CrossRefGoogle Scholar
  3. 3.
    Becker, K., Wille, U.: Communication Complexity of Group Key Distribution. In: ACMCCS 1998 (1998)Google Scholar
  4. 4.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Lynn, B., Shacham, H.: Short Signature from Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 213–229. Springer, Heidelberg (2001)Google Scholar
  6. 6.
    Boldyreva, A.: Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. Public Key Cryptography 2003, pp. 31–46 (2003)Google Scholar
  7. 7.
    Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic Group Diffie-Hellman Key Exchange under Standerd Assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Burmester, M., Desmedt, Y.: A Secure and Efficient Conference Key Distribution System. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  9. 9.
    Diffie, W., Hellman, M.: New Directions In Cryptography. IEEE Transactions on Information Theory IT-22(6), 644–654 (1976)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Dutta, R., Barua, R., Sarkar, P.: Provably Secure Authenticated Tree Based Group Key Agreement, Full version, availale at
  11. 11.
    Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Katz, J., Yung, M.: Scalable Protocols for Authenticated Group Key Exchange. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Kim, Y., Perrig, A., Tsudik, G.: Tree based Group Key Agreement. Report 2002/009 (2002),
  14. 14.
    Steiner, M., Tsudik, G., Waidner, M.: Diffie-Hellman Key Distribution Extended to Group Communication. In: ACM Conference on Computation and Communication Security (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ratna Dutta
    • 1
  • Rana Barua
    • 1
  • Palash Sarkar
    • 1
  1. 1.Cryptology Research GroupStat-Math and Applied Statistics UnitKolkataIndia

Personalised recommendations