Advertisement

Multi-designated Verifiers Signatures

  • Fabien Laguillaumie
  • Damien Vergnaud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3269)

Abstract

Designated verifier signatures were introduced in the middle of the 90’s by Jakobsson, Sako and Impagliazzo, and independenty patended by Chaum as private signatures. In this setting, a signature can only be verified by a unique and specific user. At Crypto’03, Desmedt suggested the problem of generalizing the designated verifier signatures. In this case, a signature should be intended to a specific set of different verifiers. In this article, we provide a formal definition of multi-designated verifiers signatures and give a rigorous treatment of the security model for such a scheme. We propose a construction based on ring signatures, which meets our definition, but does not achieve the privacy of signer’s identity property. Finally, we propose a very efficient bi-designated verifiers signature scheme based on bilinear maps, which protects the anonymity of signers.

Keywords

multi-designated verifiers signatures ring signatures bilinear maps privacy of signer’s identity exact security 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n Signatures from a Variety of Keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: a Paradigm for Designing Efficient Protocols. In: Proc. of 1st ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  3. 3.
    Boneh, D., Franklin, M.: Efficient generation of shared RSA keys. Journal of the ACM 48(4), 702–722 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Boneh, D., Franklin, M.: Identity-based Encryption from the Weil Pairing. SIAM J. Computing 32(3), 586–615 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Bresson, E., Stern, J., Szydlo, M.: Threshold Ring Signatures for Ad-hoc Groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Chaum, D.: Private Signature and Proof Systems. US Patent 5,493,614 (1996)Google Scholar
  8. 8.
    Desmedt, Y.: Verifier-Designated Signatures, Rump Session, In: Crypto 2003 (2003)Google Scholar
  9. 9.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. of Computing 17(2), 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Herranz, J., Sáez, G.: Forking Lemmas in the Ring Signatures’ Scenario. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 266–279. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and their Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 142–154. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Joux, A.: A One Round Protocol for Tripartite Diffie–Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Laguillaumie, F., Vergnaud, D.: Designated Verifier Signature: Anonymity and Efficient Construction from any Bilinear Map. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 105–119. Springer, Heidelberg (2005) (to appear)CrossRefGoogle Scholar
  14. 14.
    Okamoto, T., Pointcheval, D.: The Gap-Problems: a New Class of Problems for the Security of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Shoup, V.: OAEP reconsidered. J. Cryptology 15(4), 223–249 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Steinfield, R., Wang, H., Pierprzyk, J.: Efficient Extension of Standard Schnorr/RSA signatures into Universal Designated-Verifier Signatures. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 86–100. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Zhang, F., Safavi-Naini, R., Susilo, W.: An Efficient Signature Scheme from Bilinear Pairings and Its Applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Fabien Laguillaumie
    • 1
    • 2
  • Damien Vergnaud
    • 2
  1. 1.France Télécom R&DCaen Cedex 4France
  2. 2.Laboratoire de Mathématiques Nicolas OresmeUniversité de Caen, Campus IICaen CedexFrance

Personalised recommendations