Advertisement

Security Analysis of the Generalized Self-shrinking Generator

  • Bin Zhang
  • Hongjun Wu
  • Dengguo Feng
  • Feng Bao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3269)

Abstract

In this paper, we analyze the generalized self-shrinking generator newly proposed in [8]. Some properties of this generator are described and an equivalent definition is derived, after which two attacks are developed to evaluate its security. The first attack is an improved clock-guessing attack using short keystream with the filter function (vector G) known. The complexity of this attack is O(20.694n), where n is the length of the LFSR used in the generator. This attack shows that the generalized self-shrinking generator can not be more secure than the self-shrinking generator, although much more computations may be required by it. Our second attack is a fast correlation attack with the filter function (vector G) unknown. We can restore both the initial state of the LFSR with arbitrary weight feedback polynomial and the filter function (vector G) with complexity much lower than the exhaustive search. For example, for a generator with 61-stage LFSR, given a keystream segment of 217.1 bits, the complexity is around 256, which is much lower than 2122, the complexity of the exhaustive search.

Keywords

Stream cipher Self-shrinking generator Clock control Fast correlation attack Linear feedback shift register 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armknecht, F., Krause, M.: Algebraic Attacks on Combiner with Memory. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 162–175. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Blackburn, S.R.: The linear complexity of the self-shrinking generator. IEEE Transactions on Information Theory 45(6), 2073–2077 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chose, P., Joux, A., Mitton, M.: Fast Correlation Attacks: An Algorithmic Point of View. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 209–221. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Coppersmith, D., Krawczyk, H., Mansour, Y.: The Shrinking Generator. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Courtois, N.T.: Fast Algebraic Attacks on Stream ciphers with Linear Feedback. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Courtois, N.T., Meier, W.: Algebraic Attacks on Stream ciphers with Linear Feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Hu, Y.P., Xiao, G.Z.: Generalized Self-Shrinking Generator. IEEE Transactions on Information Theory 50(4), 714–719 (2004)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Krawczyk, H.: The shrinking generator: Some practical considerations. In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 45–46. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Krause, M.: BDD-based Cryptanalysis of Keystream generators. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 222–237. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Mihaljević, M., Fossorier, P.C., Imai, H.: A Low-complexity and high-performance algorithm for fast correlation attack. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 196–212. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Mihaljević, M., Fossorier, P.C., Imai, H.: Fast correlation attack algorithm with list decoding and an application. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 196–210. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Zenner, E., Krause, M., Lucks, S.: Improved Cryptanalysis of the Self-Shrinking Generator. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 21–35. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Bin Zhang
    • 1
    • 2
  • Hongjun Wu
    • 1
  • Dengguo Feng
    • 2
  • Feng Bao
    • 1
  1. 1.Institute for Infocomm ResearchSingapore
  2. 2.State Key Laboratory of Information SecurityGraduate School of the Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations