Identification of Traitors Using a Trellis

  • Marcel Fernandez
  • Miguel Soriano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3269)


In a fingerprinting scheme a different set of marks is embedded in each copy of a digital object, in order to deter illegal redistribution. A group of dishonest users, called traitors, collude to create a pirate copy that hides their identities, by putting together different parts of their copies. If the sets to be embedded are the codewords of an error correcting code then efficient algorithms can be used to trace the traitors. In this paper we present a tracing algorithm, that by applying the Viterbi algorithm to the trellis representation of a cyclic traceability code, finds all possibly identifiable traitors.


Positive Parent Cyclic Code Viterbi Algorithm Soft Information List Decode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inform. Theory 44(5), 1897–1905 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Forney, G.D.: The Viterbi algorithm. Proc. IEEE 61, 268–278 (1973)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraicgeometry codes. IEEE Trans. Inform. Theory 45(6), 1757–1767 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Safavi-Naini, R., Wang, Y.: Sequential traitor tracing. IEEE Trans. Inform. Theory 49(5), 1319–1326 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Seshadri, N., Sundberg, C.-E.W.: List Viterbi decoding algorithms with applications. IEEE Trans. Comm. 42, 313–323 (1994)CrossRefGoogle Scholar
  6. 6.
    Silverberg, A., Staddon, J., Walker, J.: Applications of list decoding to tracing traitors. IEEE Trans. Inform. Theory 49(5), 1312–1318 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and traceability codes. IEEE Trans. Inform. Theory 47(3), 1042–1049 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Wolf, J.K.: Efficient maximum likelihood decoding of linear block codes using a trellis. IEEE Trans. Inform. Theory 24, 76–80 (1978)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Marcel Fernandez
    • 1
  • Miguel Soriano
    • 1
  1. 1.Department of Telematics EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations