Advertisement

On the Minimal Assumptions of Group Signature Schemes

  • Michel Abdalla
  • Bogdan Warinschi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3269)

Abstract

One of the central lines of cryptographic research is identifying the weakest assumptions required for the construction of secure primitives. In the context of group signatures the gap between what is known to be necessary (one-way functions) and what is known to be sufficient (trapdoor permutations) is quite large. In this paper, we provide the first step towards closing this gap by showing that the existence of secure group signature schemes implies the existence of secure public-key encryption schemes. Our result shows that the construction of secure group signature schemes based solely on the existence of one-way functions is unlikely. This is in contrast to what is known for standard signature schemes, which can be constructed from any one-way function.

Keywords

Group signatures one-way functions trapdoor permutations minimal assumptions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., Tsudik, G.: Group signatures Á la carte. In: ACM (ed.) 10th SODA, Baltimore, Maryland, USA, January 17-19, pp. 848–849. ACM-SIAM, New York (1999)Google Scholar
  3. 3.
    Ateniese, G., Tsudik, G.: Some open issues and new directions in group signatures. In: Franklin, M.K. (ed.) FC 1999. LNCS, vol. 1648, pp. 196–211. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Barak, B.: How to go beyond the black-box simulation barrier. In: IEEE (ed.) 42nd FOCS, Las Vegas, USA, October 14-17, pp. 106–115. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  5. 5.
    Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the shared random string model. In: IEEE (ed.) 43nd FOCS, Vancouver, Canada, November 16-19, pp. 345–355. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  6. 6.
    Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zeroknowledge and its applications. In: IEEE (ed.) 42nd FOCS, Las Vegas, USA, October 14-17, pp. 116–125. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  7. 7.
    Bellare, M., Halevi, S., Sahai, A., Vadhan, S.P.: Many-to-one trapdoor functions and their ralation to public-key cryptosystems. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 283–298. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Bellare, M., Micali, S.: How to sign given any trapdoor function. Journal of the ACM 39(1), 214–233 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic groups. Cryptology ePrint Archive, Report 2004/077 (2004), http://eprint.iacr.org/
  11. 11.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Bresson, E., Stern, J.: Efficient revocation in group signatures. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Camenisch, J.: Efficient and generalized group signatures. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 465–479. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  15. 15.
    Chen, L., Pedersen, T.P.: New group signature schemes. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 171–181. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  16. 16.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory 22, 644–654 (1978)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relationship between public key encryption and oblivious transfer. In: IEEE (ed.) 41st FOCS, Las Vegas, USA, November 12-14, pp. 325–335. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  18. 18.
    Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor functions on trapdoor predicates. In: IEEE (ed.) 42nd FOCS, Las Vegas, USA, October 14-17, pp. 126–135. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  19. 19.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. In: IEEE (ed.) 27th FOCS, pp. 174–187. IEEE Computer Society Press, Los Alamitos (1986)Google Scholar
  20. 20.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM 38(3), 691–729 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Science 28, 270–299 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. In: ACM Transactions on Information and System Security, pp. 524–543. ACM, New York (1999)Google Scholar
  24. 24.
    Impagliazzo, R., Luby, M.: One-way functions are essential for complexitybased cryptography. In: IEEE (ed.) 30th FOCS, pp. 230–235. IEEE Computer Society Press, Los Alamitos (1989)Google Scholar
  25. 25.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: ACM (ed.) 21st ACM STOC, Seattle, Washington, USA, May 15-17, pp. 44–61. ACM Press, New York (1989)Google Scholar
  26. 26.
    Kiayias, A., Yung, M.: Extracting group signatures from traitor tracing schemes. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 630–648. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  27. 27.
    Kiayias, A., Yung, M.: Group signatures: Provable security, efficient constructions and anonymity from trapdoor-holders. Cryptology ePrint Archive, Report 2004/076 (2004), http://eprint.iacr.org/
  28. 28.
    Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: ACM (ed.) 21st ACM STOC, Seattle, Washington, USA, May 15-17, pp. 33–43. ACM Press, New York (1989)Google Scholar
  29. 29.
    Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: ACM (ed.) 22nd ACM STOC, Baltimore, Maryland, USA, May 14-16, pp. 387–394. ACM Press, New York (1990)Google Scholar
  31. 31.
    Yao, C.: Theory and applications of trapdoor functions. In: IEEE (ed.) 23rd FOCS, pp. 80–91. IEEE Computer Society Press, Los Alamitos (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Michel Abdalla
    • 1
  • Bogdan Warinschi
    • 2
  1. 1.Departement d’InformatiqueÉcole Normale SupérieureParis Cedex 05France
  2. 2.Computer Science DepartmentUniversity of California at Santa CruzSanta CruzUSA

Personalised recommendations