Skip to main content

Approximation Algorithms for Quickest Spanning Tree Problems

  • Conference paper
  • 1443 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3221))

Abstract

Let G=(V,E) be an undirected multi-graph with a special vertex rootV, and where each edge eE is endowed with a length l(e) ≥ 0 and a capacity c(e) > 0. For a path P that connects u and v, the transmission time of P is defined as \(t(P)=\sum_{e \in P} l(e) + \max_{e \in P} {1 \over c(e)}\). For a spanning tree T, let P \(_{u,v}^{T}\) be the unique uv path in T. The quickest radius spanning tree problem is to find a spanning tree T of G such that \(\max _{v \in V} t(P^T_{root,v})\) is minimized. In this paper we present a 2-approximation algorithm for this problem, and show that unless P =NP, there is no approximation algorithm with performance guarantee of 2 – ε for any ε >0. The quickest diameter spanning tree problem is to find a spanning tree T of G such that \(\max_{u,v \in V} t(P^T_{u,v})\) is minimized. We present a \({3 \over 2}\)-approximation to this problem, and prove that unless P=NP there is no approximation algorithm with performance guarantee of \({3 \over 2}-\epsilon\) for any ε >0.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, G.-H., Hung, Y.-C.: On the quickest path problem. Information Processing Letters 46, 125–128 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chen, Y.L.: An algorithm for finding the k quickest paths in a network. Computers & Opns. Res. 20, 59–65 (1993)

    Article  MATH  Google Scholar 

  3. Chen, Y.L.: Finding the k quickest simplest paths in a network. Information Processing Letters 50, 89–92 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, Y.L., Chin, Y.H.: The quickest path problem. Computers & Opns. Res. 17, 153–161 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hassin, R., Tamir, A.: On the minimum diameter spanning tree problem. Information Processing Letters 53, 109–111 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lee, D.T., Papadopoulou, E.: The all-pairs quickest path problem. Information Processing Letters 45, 261–267 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Martins, E.Q.V., Santos, J.L.E.: An algorithm for the quickest path problem. Operations Research Letters 20, 195–198 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Moore, M.H.: On the fastest route to convoy-type traffic in flowrate-constrained networks. Transportation Science 10, 113–124 (1976)

    Article  MathSciNet  Google Scholar 

  9. Pelegrin, B., Fernandez, P.: On the sum-max bicriterion path problem. Computers & Opns. Res. 25, 1043–1054 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Rao, N.S.V.: Probabilistic quickest path algorithm. Theoretical Computer Science 312, 189–201 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rosen, J.B., Sun, S.Z., Xue, G.L.: Algorithms for the quickest path problem and enumeration of quickest paths. Computers & Opns. Res. 18, 579–584 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hassin, R., Levin, A. (2004). Approximation Algorithms for Quickest Spanning Tree Problems. In: Albers, S., Radzik, T. (eds) Algorithms – ESA 2004. ESA 2004. Lecture Notes in Computer Science, vol 3221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30140-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30140-0_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23025-0

  • Online ISBN: 978-3-540-30140-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics