Skip to main content

Dynamic Pedobarography Transitional Objects by Lagrange’s Equation with FEM, Modal Matching and Optimization Techniques

  • Conference paper
Image Analysis and Recognition (ICIAR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3212))

Included in the following conference series:

Abstract

This paper presents a physics-based approach to obtain 2D or 3D dynamic pedobarography transitional objects from two given images (2D or 3D). With the used methodology, we match nodes of the input objects by using modal matching, improved with optimization techniques, and solve the Lagrangian dynamic equilibrium equation to obtain the intermediate shapes. The strain energy involved can also be analysed and used to quantify local or global deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tavares, J., Barbosa, J., Padilha, A.J.: Matching Image Objects in Dynamic Pedobarography. In: 11th Portuguese Conference on Pattern Recognition, Porto, Portugal (2000)

    Google Scholar 

  2. Tavares, J.: Análise de Movimento de Corpos Deformáveis usando Visão Computacional, Tese de Doutoramento, FEUP (2000)

    Google Scholar 

  3. Pinho, R., Tavares, J.: Resolution of the Dynamic Equilibrium Equation to Simulate Objects’ Movement/Deformation. In: 7th Portuguese Conference on Biomedical Engineering, Lisboa, Portugal (2003)

    Google Scholar 

  4. Pinho, R., Tavares, J.: Morphing of Image Represented Objects by a Physical Methodology. In: 19th ACM Symposium on Applied Computing, Nicosia, Cyprus (2004)

    Google Scholar 

  5. Bastos, L., Tavares, J.: Matching of Objects Nodal Points Improvement using Optimization. In: Inverse Problems, Design and Optimization Symposium, Rio de Janeiro, Brasil (2004)

    Google Scholar 

  6. Terzopoulos, D., Witkin, A., Kass, M.: Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion. Artificial Intelligence Journal 36, 91–123 (1988)

    Article  MATH  Google Scholar 

  7. Terzopoulos, D., Metaxas, D.: Dynamic 3D Models with Local and Global Deformations: Deformable Superquadrics. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(7), 703–714 (1991)

    Article  Google Scholar 

  8. Maciel, J.L., Costeira, J.P.: A Global Solution to Sparse Correspondence Problems. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(2), 187–199 (2003)

    Article  Google Scholar 

  9. Shapiro, L.S., Brady, J.M.: Feature-Based Correspondence: An Eigenvector Approach. Image and Vision Computing 10, 283–288 (1992)

    Article  Google Scholar 

  10. Sclaroff, S., Pentland, A.: Modal Matching for Correspondence and Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(6), 545–561 (1995)

    Article  Google Scholar 

  11. Sclaroff, S.: Modal Matching: A Method for Describing, Comparing and Manipulating Digital Signals, PhD Thesis, MIT (1995)

    Google Scholar 

  12. Tavares, J., Barbosa, J., Padilha, A.: Determinação da Correspondência entre Objectos utilizando Modelação Física, 9º Encontro Português de Computação Gráfica, Marinha Grande, Portugal (2000)

    Google Scholar 

  13. Cook, R., Malkus, D., Plesha, M.: Concepts and Applications of Finite Element Analysis. John Wiley & Sons Inc., Chichester (1989)

    MATH  Google Scholar 

  14. Bathe, K.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

  15. Tavares, J., Barbosa, J., Padilha, A.: Apresentação De Um Banco De Desenvolvimento E Ensaio Para Objectos Deformáveis. RESI - Revista Electrónica de Sistemas de Informação 1(1) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pinho, R.R., Tavares, J.M.R.S. (2004). Dynamic Pedobarography Transitional Objects by Lagrange’s Equation with FEM, Modal Matching and Optimization Techniques. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2004. Lecture Notes in Computer Science, vol 3212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30126-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30126-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23240-7

  • Online ISBN: 978-3-540-30126-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics