Detecting Foreground Components in Grey Level Images for Shift Invariant and Topology Preserving Pyramids

  • Giuliana Ramella
  • Gabriella Sanniti di Baja
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3211)


A method to single out foreground components in a grey level image and to build a shift invariant and topology preserving pyramid is presented. A single threshold is generally not enough to separate foreground components, perceived as individual entities. Our process is based on iterated identification and removal of pixels causing merging of foreground components with different grey levels. This is the first step to generate a pyramid which, within the limits of decreasing resolution, is shift invariant and topology preserving. Translation dependency is reduced by taking into account the four positions of the partition grid used to build lower resolutions. Topology preservation is favoured by identifying on the highest resolution pyramid level all foreground components and, then, by forcing their preservation, compatibly with the resolution, through lower resolution pyramid levels.


Grey Level Document Image Grey Level Image Lower Resolution Image Pattern Recognition Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stannard, E.E., Pycock, D.: Recognising 2-D shapes from incomplete boundaries. In: Proceedings of IEE Colloquium on Applied Statistical Pattern Recognition, pp.12/1 – 12/6 (1999)Google Scholar
  2. 2.
    Yacoub, S.B., Jolion, J.–M.: Hierarchical line extraction. In: Proceedings of IEEE Conf. on Vision, Image and Signal Processing, vol. 142, pp. 7–14 (1995)Google Scholar
  3. 3.
    Tan, C.L., Loh, S.K.K.: Efficient edge detection using hierarchical structures. Pattern Recognition 26(1), 127–135 (1993)CrossRefGoogle Scholar
  4. 4.
    Khan, G.N., Gillies, D.F.: Extracting contours by perceptual grouping. Image and Vision Computing 10(2), 77–88 (1992)CrossRefGoogle Scholar
  5. 5.
    Meer, P., Sher, C.A., Rosenfeld, A.: The chain pyramid: Hierarchical contour processing. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(4), 363–376 (1990)CrossRefGoogle Scholar
  6. 6.
    Kim, J., Kim, H.: Multiresolution-based watersheds for efficient image segmentation. Pattern Recognition Letters 24, 473–488 (2003)CrossRefGoogle Scholar
  7. 7.
    Rodrìguez, J.A., Urdiales, C., Bandera, A., Sandoval, F.: A multiresolution spatiotemporal motion segmentation technique for video sequences based on pyramidal structures. Pattern Recognition Letters 23, 1761–1769 (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Prewer, D., Kitchen, L.: Soft image segmentation by weighted linked pyramid. Pattern Recognition Letters 22, 123–132 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Rosenfeld, A., Sher, C.: Detecting image primitives using feature pyramids. Journal of Information Sciences 107, 127–147 (1998)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Nacken, P.F.M.: Image segmentation by connectivity preserving relinking in hierarchical graph structures. Pattern Recognition 28(6), 907–920 (1995)CrossRefGoogle Scholar
  11. 11.
    Bister, M., Cornelis, J., Rosenfeld, A.: A critical view of pyramid segmentation algorithms. Pattern Recognition Letters 11(9), 605–617 (1990)zbMATHCrossRefGoogle Scholar
  12. 12.
    Burt, P.J.: The Pyramid as a Structure for Efficient Computation. In: Rosenfeld, A. (ed.) Multiresolution Image Processing and Analysis, Springer, Berlin (1984)Google Scholar
  13. 13.
    Greenspan, H., Belongie, S., Goodman, R., Perona, P., Rakshit, S., Anderson, C.H.: Overcomplete steerable pyramid filters and rotation invariance. In: Proceeding IEEE Computer Vision and Pattern Recognition, Seattle, Washington, pp. 222–228 (1994)Google Scholar
  14. 14.
    Kong, X., Goutsias, J.: A study of pyramidal techniques for image representation and compression. Journal of Visual Communication and Image Representation 5, 190–203 (1994)CrossRefGoogle Scholar
  15. 15.
    Chen, W., Acton, S.T.: Morphological pyramids for multiscale edge detection. In: Proceedings of IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 137–141 (1998)Google Scholar
  16. 16.
    Arman, F., Pearce, J.A.: Unsupervised classification of cell images using pyramid node linking. IEEE Trans. Biomedical Engineering 37(6), 647–650 (1990)CrossRefGoogle Scholar
  17. 17.
    Montanvert, A., Mee, P., Rosenfeld, A.: Hierarchical Image Analysis Using Irregular Tessellations. IEEE Trans. on Pattern Analysis and Machine Intelligence 13(4), 307–316 (1991)CrossRefGoogle Scholar
  18. 18.
    Borgefors, G., Ramella, G., Sanniti di Baja, G.: Shape and topology preserving multi-valued image pyramids for multi-resolution skeletonization. Pattern Recognition Letters 22, 741–751 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Giuliana Ramella
    • 1
  • Gabriella Sanniti di Baja
    • 1
  1. 1.Istituto di Cibernetica E. CaianielloCNRPozzuoli (Naples)Italy

Personalised recommendations