2-D Shape Matching Using Asymmetric Wavelet-Based Dissimilarity Measure

  • Ibrahim El Rube’
  • Mohamed Kamel
  • Maher Ahmed
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3211)


In this paper, a wavelet-based multiscale asymmetric dissimilarity measure for shape matching is proposed. The wavelet transform is used to decompose the shape boundary into a multiscale representation. Given two shapes, a distance matrix is computed from the moment invariants of the wavelet coefficients at all the scale levels. The asymmetric dissimilarity is then calculated from the minimum values across each row on the distance matrix. The proposed asymmetric dissimilarity is a Hausdorff-like measure and is used for finding globally related shapes. The similarity paths obtained from the locations of the minimum distance values can be used to illustrate these relations.


Distance Matrix Wavelet Decomposition Scale Level Dissimilarity Measure Shape Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Loncaric, S.: A survey of shape analysis techniques. Pattern Recognition 31, 983–1001 (1998)CrossRefGoogle Scholar
  2. 2.
    Veltkamp, R., Hagedoorn, M.: State-of-the-art in shape matching. In: M.L. ed.: . Principles of Visual Information Retrieval, pp. 87–119. Springer, Heidelberg (2001)Google Scholar
  3. 3.
    Huttenlocher, D., Klanderman, D., Rucklige, A.: Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 850–863 (1993)CrossRefGoogle Scholar
  4. 4.
    Chauang, G., Kuo, C.: Wavelet descriptor of planar curves: Theory and applications. IEEE Transaction on Image Processing 5, 56–70 (1996)CrossRefGoogle Scholar
  5. 5.
    Kashi, R., B-Kavde, P., Nowakowski, R., Papathomas, T.: 2-D shape representation and averaging using normalized wavelet descriptors. Simulation 66, 164–178 (1996)CrossRefGoogle Scholar
  6. 6.
    Alferez, R., Wang, Y.: Geometric and illumination invariants for object recognition. IEEE Trans. on PAMI 21, 505–536 (1999)Google Scholar
  7. 7.
    Tieng, Q., Boles, W.: An application of wavelet based affine invariant representation. Pattern Recognition Letters 16, 1287–1296 (1995)CrossRefGoogle Scholar
  8. 8.
    Khalil, M., Bayoumi, M.: Affine invariants for object recognition using the wavelet transform. Pattern Recognition Letters 23, 57–72 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Chen, G.: Applications of wavelet transformation in pattern recognition and denoising. Master thesis, Concordia University (1999) Google Scholar
  10. 10.
    Lin, W., Chen, C., Sun, Y.: Multiscale object recognition under affine transformation. IEICE Transaction Information and Systems E82d, 1474–1482 (1999)Google Scholar
  11. 11.
    Ohm, J.R., Bunjamin, F., Liebsch, W., Makai, B., Mller, K.A., Smolic, D.Z.: A set of visual descriptors and their combination in a low-level description scheme. Signal Processing: Image Communication 16, 157–179 (2000)CrossRefGoogle Scholar
  12. 12.
    Zhao, D., Chen, J.: Affine curve moment invariants for shape recognition. Pattern Recognition 30, 895–901 (1997)CrossRefGoogle Scholar
  13. 13.
    Flusser, J., Suk, T.: A moment-based approach to registration of images with affine geometric distortion. IEEE Transactions on Geoscience and Remote Sensing 32, 382–387 (1994)CrossRefGoogle Scholar
  14. 14.
    Latecki, P.L.J. (latecki/)

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ibrahim El Rube’
    • 1
  • Mohamed Kamel
    • 2
  • Maher Ahmed
    • 3
  1. 1.Systems Design EngineeringUniversity of WaterlooCanada
  2. 2.Electrical and Computer EngineeringUniversity of WaterlooCanada
  3. 3.Physics and Computer Science DepartmentWilfrid Laurier UniversityCanada

Personalised recommendations