Color Image Segmentation Using Energy Minimization on a Quadtree Representation

  • Adolfo Martínez-Usó
  • Filiberto Pla
  • Pedro García-Sevilla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3211)


In this article we present the results of an unsupervised segmentation algorithm based on a multiresolution method. The algorithm uses color and edge information in an iterative minimization process of an energy function. The process has been applied to fruit images to distinguish the different areas of the fruit surface in fruit quality assessment applications. Due to the unsupervised nature of the procedure, it can adapt itself to the huge variability of colors and shapes of the regions in fruit inspection applications.


Image Segmentation Color Space Segmentation Process Salient Region Edge Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brook, A., Kimmel, R., Sochen, N.A.: Variational restoration and edge detection for color images. Journal of Mathematical Imaging and Vision 18(3), 247–268 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen, Y.-R., Chao, K., Kim, M.S.: Machine vision technology for agricultural applications. Computers and Elect. in Agriculture 36, 173–191 (2002)CrossRefGoogle Scholar
  3. 3.
    Comaniciu, D., Meer, P.: Robust analysis of feature spaces: Color image segmentation. In: IEEE Conf. Computer Vision and Pattern Recognition, 750–755 (1997)Google Scholar
  4. 4.
    Gevers, T., Smeulders, A.W.M.: Color based object recognition. Pattern Recognition 32, 453–464 (1999)CrossRefGoogle Scholar
  5. 5.
    Hewer, G.A., Kenney, C., Manjunath, B.S.: Variational image segmentation using boundary functions. IEEE Transactions on Image Processing 7(9), 1269–1282 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. CPAM 42(4) (1989)Google Scholar
  7. 7.
    van den Geusebroek Rein Boomgaard, J.-M., Arnold, W.M., Geerts, H.: Color invariance. IEEE Transactions on PAMI 23(12), 1338–1350 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Adolfo Martínez-Usó
    • 1
  • Filiberto Pla
    • 1
  • Pedro García-Sevilla
    • 1
  1. 1.Dept. Lenguajes y Sistemas InformáticosJaume I UniverisityCastellónSpain

Personalised recommendations