Advertisement

Evaluation of Some Reordering Techniques for Image VQ Index Compression

  • António R. C. Paiva
  • Armando J. Pinho
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3211)

Abstract

Frequently, it is observed that the sequence of indexes generated by a vector quantizer (VQ) contains a high degree of correlation, and, therefore, can be further compressed using lossless data compression techniques. In this paper, we address the problem of codebook reordering regarding the compression of the image of VQ indexes by general purpose lossless image coding methods, such as JPEG-LS or CALIC. We present experimental results showing that techniques available for palette reordering of color-indexed images can also be used successfully for improving the lossless compression of images of VQ indexes.

Keywords

Image compression vector quantization reordering techniques lossless image coding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hang, H.M., Woods, J.W.: Predictive vector quantization of images. IEEE Trans. on Communications 33, 1208–1219 (1985)CrossRefGoogle Scholar
  2. 2.
    Foster, J., Gray, R.M., Dunham, M.O.: Finite-state vector quantization for waveform coding. IEEE Trans. on Information Theory 31, 348–359 (1985)CrossRefGoogle Scholar
  3. 3.
    Nasrabadi, N.M., Feng, Y.: Image compression using address-vector quantization. IEEE Trans. on Communications 38, 2166–2173 (1990)CrossRefGoogle Scholar
  4. 4.
    Wu, X., Wen, J., Wong, W.H.: Conditional entropy coding of VQ indexes for image compression. IEEE Trans. on Image Processing 8, 1005–1013 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    ISO/IEC 14495–1 and ITU Recommendation T.87: Information technology - Lossless and near-lossless compression of continuous-tone still images (1999) Google Scholar
  6. 6.
    Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans. on Image Processing 9, 1309–1324 (2000)CrossRefGoogle Scholar
  7. 7.
    Wu, X., Memon, N.: Context-based, adaptive, lossless image coding. IEEE Trans. on Communications 45, 437–444 (1997)CrossRefGoogle Scholar
  8. 8.
    Pinho, A.J., Neves, A.J.R.: A survey on palette reordering methods for improving the compression of color-indexed images. IEEE Trans. on Image Processing (2004) (in press)Google Scholar
  9. 9.
    Zaccarin, A., Liu, B.: A novel approach for coding color quantized images. IEEE Trans. on Image Processing 2, 442–453 (1993)CrossRefGoogle Scholar
  10. 10.
    Zeng, W., Li, J., Lei, S.: An efficient color re-indexing scheme for palette-based compression. In: Proc. of the 7th IEEE Int. Conf. on Image Processing, ICIP-2000, Vancouver, Canada, vol. III, pp. 476–479 (2000)Google Scholar
  11. 11.
    Pinho, A.J., Neves, A.J.R.: A note on Zeng’s technique for color reindexing of palette-based images. IEEE Signal Processing Letters 11, 232–234 (2004)CrossRefGoogle Scholar
  12. 12.
    Memon, N.D., Venkateswaran, A.: On ordering color maps for lossless predictive coding. IEEE Trans. on Image Processing 5, 1522–1527 (1996)CrossRefGoogle Scholar
  13. 13.
    Linde, Y., Buzo, A., Gray, R.M.: An algorithm for vector quantizer design. IEEE Trans. on Communications 28, 84–95 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • António R. C. Paiva
    • 1
  • Armando J. Pinho
    • 1
  1. 1.Dept. de Electrónica e Telecomunicações / IEETAUniversidade de AveiroAveiroPortugal

Personalised recommendations