Advertisement

Image Recognition Applied to Robot Control Using Fuzzy Modeling

  • Paulo J. Sequeira Gonçalves
  • L. F. Mendonça
  • J. M. C. Sousa
  • J. R. Caldas Pinto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3211)

Abstract

A new approach to eye-in-hand image-based visual servoing based on fuzzy modeling and control is proposed in this paper. Fuzzy modeling is applied to obtain an inverse model of the mapping between image features errors and joints velocities, avoiding the necessity of inverting the Jacobian. An inverse model is identified for each trajectory using measurements data of a robotic manipulator, and it is directly used as a controller. The control scheme contains an inverse fuzzy model, which is applied to a robotic manipulator performing visual servoing, for a given profile of image features errors. The obtained experimental results show the effectiveness of the proposed control scheme: the fuzzy controller can follow a point-to-point pre-defined trajectory faster (or smoother) than the classic approach.

Keywords

Fuzzy Modeling Fuzzy Controller Fuzzy Cluster Inverse Model Joint Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Transactions on Robotics and Automation 8(3), 313–326 (1992)CrossRefGoogle Scholar
  2. 2.
    Gonçalves, P.S., Pinto, J.C.: Camera configurations of a visual servoing setup, for a 2 dof planar robot. In: Proceedings of the 7th International IFAC Symposium on Robot Control, Wroclaw, Poland, September 2003, pp. 181–187 (2003)Google Scholar
  3. 3.
    Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: Proceedings IEEE CDC, San Diego, USA, pp. 761–766 (1979)Google Scholar
  4. 4.
    Hutchinson, S., Hager, G., Corke, P.: A tutorial on visual servo control. IEEE Transactions on Robotics and Automation 12(5), 651–670 (1996)CrossRefGoogle Scholar
  5. 5.
    Sousa, J.M., Silva, C., Sá da Costa, J.: Fuzzy active noise modeling and control. International Journal of Approximate Reasoning 33, 51–70 (2003)zbMATHCrossRefGoogle Scholar
  6. 6.
    Sousa, J.M.C., Kaymak, U.: Fuzzy Decision Making in Modeling and Control. World Scientific Pub. Co, Singapore (2002)zbMATHCrossRefGoogle Scholar
  7. 7.
    Suh, I., Kim, T.: Fuzzy membership function based neural networks with applications to the visual servoing of robot manipulators. IEEE Trans. on Fuzzy Systems 2(3), 203–220 (1994)CrossRefGoogle Scholar
  8. 8.
    Tahri, O., Chaumette, F.: Application of moment invariants to visual servoing. In: Proc.of the IEEE Int. Conf. on Robotics and Automation, Taipeh, Taiwan, pp. 4276–4281 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Paulo J. Sequeira Gonçalves
    • 1
  • L. F. Mendonça
    • 2
  • J. M. C. Sousa
    • 2
  • J. R. Caldas Pinto
    • 2
  1. 1.Escola Superior de Tecnologia Dept. of Industrial EngineeringInstituto Politécnico de Castelo BrancoCastelo BrancoPortugal
  2. 2.Instituto Superior Técnico Dept. of Mechanical Engineering, GCAR/IDMECTechnical University of LisbonLisboaPortugal

Personalised recommendations