Advertisement

Gradient Pile up Algorithm for Edge Enhancement and Detection

  • Leticia Guimarães
  • André Soares
  • Viviane Cordeiro
  • Altamiro Susin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3211)

Abstract

Edge detection plays a fundamental role on image processing. The detected edges describe an object contour that greatly improves the pattern recognition process. Many edge detectors have been proposed. Most of them apply smooth filters to minimize the noise and the image derivative or gradient to enhance the edges. However, smooth filters produce ramp edges with the same gradient magnitude as those produced by noise. This work presents an algorithm that enhances the gradient correspondent to ramp edges without amplifying the noisy ones. Moreover, an efficient method for edge detection without set a threshold value is proposed. The experimental results show that the proposed algorithm enhances the gradient of ramp edges, improving the gradient magnitude without shifting the edge location. Further, we are testing the implementation of the proposed algorithm in hardware for real time vision applications.

Keywords

Edge Detection Edge Point Synthetic Image Mean Absolute Error Edge Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gonzalez, R., Woods, R.: Digital Image Processing. Addison-Wesley, Reading (1992)Google Scholar
  2. 2.
    Marr, D., Hildreth, E.C.: Theory of Edge Detection. In: Proc. of the Royal Society of London B207, pp. 187–217 (1980)Google Scholar
  3. 3.
    Canny, J.: A Computational Approach to Edge Detection. PAMI 8(6), 679–698 (1986)Google Scholar
  4. 4.
    Perona, P., Malik, J.: Scale-Space and Edge Detection Using Anisotropic Diffusion. PAMI 12(7) (1990)Google Scholar
  5. 5.
    Petrou, M., Kitter, J.: Optimal Edge Detectors for Ramp Edges. PAMI 13(5), 483–491 (1991)Google Scholar
  6. 6.
    Wang, Z., Rao, K.R., Ben-Arie, J.: Optimal Ramp Edge Detection Using Expansion Matching. PAMI 18(11), 1092–1097 (1996)Google Scholar
  7. 7.
    Wang, D.: A Multiscale Gradient Algorithm for Image Segmentation using Watersheds. Pattern Recognition 30(12), 2043–2052 (1997)CrossRefGoogle Scholar
  8. 8.
    Bieniek, A., Moga, A.: An efficient watershed algorithm based on connected components. Pattern Recognition 33(6), 907–916 (2000)CrossRefGoogle Scholar
  9. 9.
    Ballard, D.H., Brown, C.M.: Computer Vision. Prentice Hall Inc, Englewood Cliffs (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Leticia Guimarães
    • 1
  • André Soares
    • 1
    • 2
  • Viviane Cordeiro
    • 1
  • Altamiro Susin
    • 1
    • 2
  1. 1.Departamento de Engenharia ElétricaUniversidade Federal do Rio Grande do Sul – UFRGSPorto AlegreBrazil
  2. 2.Instituto de InformáticaUniversidade Federal do Rio Grande do Sul – UFRGSPorto AlegreBrazil

Personalised recommendations