Skip to main content

A Functional Scenario for Bytecode Verification of Resource Bounds

  • Conference paper
  • First Online:
Computer Science Logic (CSL 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3210))

Included in the following conference series:

Abstract

We consider a scenario where (functional) programs in pre-compiled form are exchanged among untrusted parties. Our contribution is a system of annotations for the code that can be verified at load time so as to ensure bounds on the time and space resources required for its execution, as well as to guarantee the usual integrity properties.

Specifically, we define a simple stack machine for a first-order functional language and show how to perform type, size, and termination verifications at the level of the bytecode of the machine. In particular, we show that a combination of size verification based on quasi-interpretations and of termination verification based on lexicographic path orders leads to an explicit bound on the space required for the execution.

This work was partly supported by ACI Sécurité Informatique, project CRISS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadi, M., Stata, R.: A type system for Java bytecode subroutines. In: Proc. POPL (1998)

    Google Scholar 

  2. Amadio, R.: Max-plus quasi-interpretations. In: Hofmann, M.O. (ed.) TLCA 2003. LNCS, vol. 2701, Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Amadio, R., Coupet-Grimal, S., Zilio, S.D., Jakubiec, L.: A functional scenario for bytecode verification of resource bounds. Research Report LIF 17-2004 (2004)

    Google Scholar 

  4. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the poly-time functions. Computational Complexity 2, 97–110 (1992)

    Article  MathSciNet  Google Scholar 

  5. Bonfante, G., Marion, J.-Y., Moyen, J.-Y.: On termination methods with space bound certifications. In: Bjørner, D., Broy, M., Zamulin, A.V. (eds.) PSI 2001. LNCS, vol. 2244, Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  7. Cobham, A.: The intrinsic computational difficulty of functions. In: Proc. Logic,Methodology, and Philosophy of Science II. North Holland, Amsterdam (1965)

    Google Scholar 

  8. Hofmann, M.: The strength of non size-increasing computation. In: Proc. POPL (2002)

    Google Scholar 

  9. Jones, N.: Computability and complexity, from a programming perspective. MIT Press, Cambridge (1997)

    Book  Google Scholar 

  10. Kildall, G.: A unified approach to global program optimization. In: Proc. POPL (1973)

    Google Scholar 

  11. Leivant, D.: Predicative recurrence and computational complexity i: word recurrence and poly-time. In: Clote, Remmel (eds.) Feasible mathematics II, Birkhäuser (1994)

    Google Scholar 

  12. Lindholm, T., Yellin, F.: The Java virtual machine specification. Addison-Wesley, Reading (1999)

    Google Scholar 

  13. Marion, J.-Y.: Complexité implicite des calculs, de la théorie à la pratique. Habilitation à diriger des recherches, Université de Nancy (2000)

    Google Scholar 

  14. Marion, J.-Y., Moyen, J.-Y.: Termination and resource analysis of assembly programs by Petri Nets. Technical Report, Université de Nancy (2003)

    Google Scholar 

  15. Morriset, G., Walker, D., Crary, K., Glew, N.: From system F to typed assembly language. ACM Transactions on Programming Languages and Systems 21(3), 528–569 (1999)

    Article  Google Scholar 

  16. Necula, G.: Proof carrying code. In: Proc. POPL (1997)

    Google Scholar 

  17. Sannella, D.: Mobile resource guarantee. In: IST-Global Computing research proposal, U. Edinburgh (2001), http://www.dcs.ed.ac.uk/home/mrg/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amadio, R.M., Coupet-Grimal, S., Dal Zilio, S., Jakubiec, L. (2004). A Functional Scenario for Bytecode Verification of Resource Bounds. In: Marcinkowski, J., Tarlecki, A. (eds) Computer Science Logic. CSL 2004. Lecture Notes in Computer Science, vol 3210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30124-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30124-0_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23024-3

  • Online ISBN: 978-3-540-30124-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics