Advertisement

Web Community Directories: A New Approach to Web Personalization

  • Dimitrios Pierrakos
  • Georgios Paliouras
  • Christos Papatheodorou
  • Vangelis Karkaletsis
  • Marios Dikaiakos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3209)

Abstract

This paper introduces a new approach to Web Personalization, named Web Community Directories that aims to tackle the problem of information overload on the WWW. This is realized by applying personalization techniques to the well-known concept of Web Directories. The Web directory is viewed as a concept hierarchy which is generated by a content-based document clustering method. Personalization is realized by constructing community models on the basis of usage data collected by the proxy servers of an Internet Service Provider. For the construction of the community models, a new data mining algorithm, called Community Directory Miner, is used. This is a simple cluster mining algorithm which has been extended to ascend a concept hierarchy, and specialize it to the needs of user communities. The data that are mined present a number of peculiarities such as their large volume and semantic diversity. Initial results presented in this paper illustrate the use of the methodology and provide an indication of the behavior of the new mining method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, C.R., Horvitz, E.: Web montage: A dynamic personalized start page. In: 11th WWW Conference, Honolulu, Hawaii, USA (May 2002)Google Scholar
  2. 2.
    Breese, J.S., Heckerman, D., Kadie, C.M.: Empirical analysis of predictive algorithms for collaborative filtering. In: 14th International Conference on Uncertainty in Artificial Intelligence (UAI), University of Wisconsin Business School, Madison, Wisconsin, USA, July 24-26, pp. 43–52. Morgan Kaufmann, San Francisco (1998)Google Scholar
  3. 3.
    Bron, C., Kerbosch, J.: Algorithm 457—finding all cliques of an undirected graph. Communications of the ACM 16(9), 575–577 (1973)zbMATHCrossRefGoogle Scholar
  4. 4.
    Chen, H., Dumais, S.T.: Bringing order to the web: automatically categorizing search results. In: CHI 2000, Human Factors in Computing Systems, The Hague, Netherlands, pp. 145–152, April 1-6 (2000)Google Scholar
  5. 5.
    Cooley, R.: Web Usage Mining: Discovery and Application of Interesting Patterns from Web Data. PhD thesis, University of Minnesota (May 2000)Google Scholar
  6. 6.
  7. 7.
    Heer, J., Chi, E.H.: Identification of web user traffic composition using multimodal clustering and information scent. In: Workshop on Web Mining, SIAM Conference on Data Mining, pp. 51–58 (2001)Google Scholar
  8. 8.
    Kamdar, T., Joshi, A.: On creating adaptive web sites using weblog mining. Technical report, Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County (2000)Google Scholar
  9. 9.
    Li, W.-S., Vu, Q., Chang, E., Agrawal, D., Hara, Y., Takano, H.: Powerbookmarks: A system for personalizable web information organization, sharing, and management. In: 8th International World Wide Web Conference, Toronto, Canada (May 1999)Google Scholar
  10. 10.
    Mladenic, D.: Turning yahoo into an automatic web-page classifier. In: 13th European Conference on Artificial Intelligence, ECAI 1998, pp. 473–474. ECCAI Press, Brighton (1998)Google Scholar
  11. 11.
    Mobasher, B., Cooley, R., Srivastava, J.: Creating adaptive web sites through usage-based clustering of urls. In: IEEE Knowledge and Data Engineering Exchange Workshop, KDEX 1999 (1999)Google Scholar
  12. 12.
    Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on web usage mining. Communications of the ACM 43(8), 142–151 (2000)CrossRefGoogle Scholar
  13. 13.
    Mobasher, B., Dai, H., Luo, T., Sung, Y., Zhu, J.: Integrating web usage and content mining for more effective personalization. In: International Conference on E-Commerce and Web Technologies, ECWeb 2000, Greenwich, UK, pp. 165–176 (2000)Google Scholar
  14. 14.
    Ngu, D.S.W., Wu, X.: Sitehelper: A localized agent that helps incremental exploration of the world wide web. In: 6th International World Wide Web Conference, Santa Clara, California, USA, April 7-11, vol. 29, pp. 691–700 (1997)Google Scholar
  15. 15.
    Paliouras, G., Papatheodorou, C., Karkaletsis, V., Spyropoulos, C.D.: Discovering user communities on the internet using unsupervised machine learning techniques. Interacting with Computers Journal 14(6), 761–791 (2002)CrossRefGoogle Scholar
  16. 16.
    Pierrakos, D., Paliouras, G., Papatheodorou, C., Spyropoulos, C.D.: Web usage mining as a tool for personalization: a survey. User Modeling and User-Adapted Interaction 13(4), 311–372 (2003)CrossRefGoogle Scholar
  17. 17.
    Open Directory Project, http://dmoz.org
  18. 18.
    Spiliopoulou, M., Faulstich, L.C.: Wum: A web utilization miner. In: EDBT Workshop of Web and databases WebDB 1998 (1998)Google Scholar
  19. 19.
    Spyratos, N., Tzitzikas, Y., Christophides, V.: On personalizing the catalogs of web portals. In: FLAIRS Conference, pp. 430–434 (2002)Google Scholar
  20. 20.
    Srivastava, J., Cooley, R., Deshpande, M., Tan, P.T.: Web usage mining: Discovery and applications of usage patterns from web data. SIGKDD Explorations 1(2), 12–23 (2000)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Yan, T.W., Jacobsen, M., Garcia-Molina, H., Dayal, U.: From user access patterns to dynamic hypertext linking. In: 5th World Wide Web Conference (WWW5), Paris, France, pp. 1007–1014 (May 1996)Google Scholar
  23. 23.
    Zhao, Y.: G Karypis. Evaluation of hierarchical clustering algorithms for document datasets. In: CICM (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Dimitrios Pierrakos
    • 1
  • Georgios Paliouras
    • 1
  • Christos Papatheodorou
    • 2
  • Vangelis Karkaletsis
    • 1
  • Marios Dikaiakos
    • 3
  1. 1.Institute of Informatics and TelecommunicationsNCSR “Demokritos”Ag. ParaskeviGreece
  2. 2.Department of Archive & Library SciencesIonian UniversityCorfuGreece
  3. 3.Department of Computer ScienceUniversity of CyprusNicosiaCyprus

Personalised recommendations