Advertisement

An Approach to Estimate the Value of User Sessions Using Multiple Viewpoints and Goals

  • E. Menasalvas
  • S. Millán
  • M. S. Pérez
  • E. Hochsztain
  • A. Tasistro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3209)

Abstract

Web-based commerce systems fail to achieve many of the features that enable small businesses to develop a friendly human relationship with customers. Although many enterprises have worried about user identification to solve the problem, the solution goes far beyond trying to find out what navigator’s behavior looks like. Many approaches have recently been proposed to enrich the data in web logs with semantics related to the business so that web mining algorithms can later be applied to discover patterns and trends. In this paper we present an innovative method of log enrichment as several goals and viewpoints of the organization owning the site are taken into account. By later applying discriminant analysis to the information enriched this way, it is possible to identify the relevant factors that contribute most to the success of a session for each viewpoint under consideration. The method also helps to estimate ongoing session value in terms of how the company’s objectives and expectations are being achieved.

Keywords

Canonical Discriminant Function Semantic Layer Navigation Pattern Global Success Ongoing Session 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, R.E., Tatham, R.L., Black, W.C.: Multivariate Data Analysis, 5th edn. March 1998, Prentice Hall College Div., Englewood Cliffs (1998)Google Scholar
  2. 2.
    Berendt, B., Hotho, A., Stumme, G.: Towards semantic web mining. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 264–278. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Berendt, B., Spiliopoulou, M.: Analysis of navigation behavior in web sites integrating multiple information systems. The VLDB Journal 9, 56–75 (2000)CrossRefGoogle Scholar
  4. 4.
    Borges, J., Levene, M.: A heuristic to capture longer user web navigation patterns. In: Proc. of the First International Conference on Electronic Commerce and Web Technologies, Greenwich, U.K., pp. 27–34 (September 2000)Google Scholar
  5. 5.
    Chi, E.H., Pirolli, P., Pitkow, J.: The scent of a site:A system for analyzing and predicting information scent, usage, and usability of a web site. In: Proc. of CHI 2000, The Hague, Amsterdam CHI Letters (2000)Google Scholar
  6. 6.
    Collins, J., Ketter, W., Gini, M., Mobasher, B.: A multi-agent negotiation testbed for contracting tasks with temporal and precedence constraints. Int. Journal of Electronic Commerce 7(1), 35–57 (2002)Google Scholar
  7. 7.
    Gordijn, J., Akkermans, H.: Does e-business modeling really help? Proceedings of the 36th Hawaii International Conference On System Sciences (HICSS-36) (January 2003)Google Scholar
  8. 8.
    Gordijn, J., Akkermans, J.M.: Value-based requirements engineering: exploring innovative e-commerce ideas. Requirements Engineering 8(2), 114–134 (2003)CrossRefGoogle Scholar
  9. 9.
    Gordijn, J.: Why visualization of e-business models matters. In: 16th eCommerce Conference eTransformation panel Business models & the mobile industry: Concepts, Metrics, Visualization and Cases (June 2003)Google Scholar
  10. 10.
    Hadjimichael, M., Marbán, O., Menasalvas, E., Millan, S., Peña, J.M.: Subsessions: a granular approach to click path analysis. In: Proceedings of IEEE Int. Conf. On Fuzzy Systems 2002 (WCCI2002), Honolulu, U.S.A., May 2002, pp. 878–883 (2002)Google Scholar
  11. 11.
    Keibaun, D.G., Kupper, L.L., Muller, K.E.: Applied Regression Analysis and Other Multivariable Methods. PWS-KENT Publishing Company, USA (1988)Google Scholar
  12. 12.
    Kohavi, R., Rothleder, N.J., Simoudis, E.: Emerging trends in business analytics. Communications of the ACM 45(8), 45–48 (2002)CrossRefGoogle Scholar
  13. 13.
    Lee, J., Podlaseck, M., Schonberg, E., Hoch, R.: Visualization and analysis of clickstream data of online stores for understanding web merchandizing. Data Mining and Knowledge discovery 5(1/2) (2001)Google Scholar
  14. 14.
    Maes, P.: Agents that reduce work and information overload. Communications of the ACM 37(7) (1994)Google Scholar
  15. 15.
    Menasalvas, E., Millán, S., Hochsztain, E.: A granular approach for analyzing the degree of afability of a web site. In: Proc. of International Conference on Rough Sets and Current Trends in Computing RSCTC 2002 (October 2002)Google Scholar
  16. 16.
    Mobasher, B., Dai, H., Luo, T., Nakagawa, M., Witshire, J.: Discovery of aggregate usage profiles for web personalization. In: Proceedings of the WebKDD Workshop (2000)Google Scholar
  17. 17.
    Morrison, D.: Multivariate Statistical Methods, 4th edn. Duxbury Press, Boston (2002)Google Scholar
  18. 18.
    Oberle, D., Berendt, B., Hotho, A., Gonzalez, J.: Conceptual user tracking. Advance in Web Intelligence. LNAI 2663. AWIC 2003, pp. 155–164 (May 2003)Google Scholar
  19. 19.
    Papazoglou, M.: Agent-oriented technology in support of e-business. Communications of the ACM 44(4) (2001)Google Scholar
  20. 20.
    Payne, T.R., Singh, R., Sycara, K.: Browsing schedules - an agent-based approach to navigating the semantic web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 469–473. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Piatetsky-Shapiro, G.: Interview with Jesus Mena (2001), http://www.kdnuggets.com/news/2001/n13/13i.html (Last update: July 2003)
  22. 22.
    Schoop, M., Becks, A., Quix, C., Burwick, T., Engels, C., Jarke, M.: Enhancing decision and negotiation support in enterprise networks through semantic web technologies. In: Tolksdorf, R., Eckstein, R. (eds.) XML Technologien für das Semantic Web - XSW, Berlin. Lecture Notes in Informatics, vol. P-14, pp. 161–167 (2002)Google Scholar
  23. 23.
    Sieg, B., Mobasher, S.: Lytinen, and R. Burke. Concept based query enhancement in the arch search agent. In: Proceedings of the 4th International Conference on Internet Computing (IC 2003), Las Vegas (June 2003)Google Scholar
  24. 24.
    Spiliopoulou, M., Pohle, C., Faulstich, L.: Improving the effectiveness of a web site with web usage mining. In: Proceedings of the WEBKDD 1999 (1999)Google Scholar
  25. 25.
    Spiliopoulou, M., Pohle, C.: Data mining for measuring and improving the success of web sites. Data mining and Knowledge Discovery, 5(1-2) (2001)Google Scholar
  26. 26.
    Srivastava, J., Cooley, R., Deshpande, M., Tan, P.: Web usage mining: Discovery and applications of usage patterns from web data. SIGKDD Explorations 1, 12–23 (2000)CrossRefGoogle Scholar
  27. 27.
    Teltzrow, M., Berendt, B.: Web-usage-based success metrics for multichannel businesses. In: Proceedings of WebKDD 2003 Workshop, August 27, Washington DC, USA (2003)Google Scholar
  28. 28.
    Tewari, G., Maes, P.: Design and implementation of an agent-based intermediary infrastructure for electronic markets. In: Proceedings of the EC 2000, Minneapolis, Minnesota (October 2000)Google Scholar
  29. 29.
    Wolfang, G., Lars, S.: Mining web navigation path fragments. InWorkshop onWeb Mining for E-Commerce - Challenges and Opportunities Working Notes (KDD 2000), Boston, MA, pp. 105–110 (August 2000)Google Scholar
  30. 30.
    Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. Knowledge Engineering Review (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • E. Menasalvas
    • 1
  • S. Millán
    • 2
  • M. S. Pérez
    • 1
  • E. Hochsztain
    • 3
  • A. Tasistro
    • 4
  1. 1.Facultad de Informática UPM.MadridSpain
  2. 2.Universidad del Valle. Cali.Colombia
  3. 3.Facultad de IngenieríaUniversidad ORTUruguay
  4. 4.Universidad de la RepúblicaUruguay

Personalised recommendations