Skip to main content

Modelling Inhibition in Metabolic Pathways Through Abduction and Induction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3194))

Abstract

In this paper, we study how a logical form of scientific modelling that integrates together abduction and induction can be used to understand the functional class of unknown enzymes or inhibitors. We show how we can model, within Abductive Logic Programming (ALP), inhibition in metabolic pathways and use abduction to generate facts about inhibition of enzymes by a particular toxin (e.g. Hydrazine) given the underlying metabolic pathway and observations about the concentration of metabolites. These ground facts, together with biochemical background information, can then be generalised by ILP to generate rules about the inhibition by Hydrazine thus enriching further our model. In particular, using Progol 5.0 where the processes of abduction and inductive generalization are integrated enables us to learn such general rules. Experimental results on modelling in this way the effect of Hydrazine in a real metabolic pathway are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alves, R., Chaleil, R.A., Sternberg, M.J.: Evolution of enzymes in metabolism: a network perspective. Mol. Biol. 320(4), 751–770 (2002)

    Article  Google Scholar 

  2. Alm, E.E., Arkin, A.P.: Biological networks. Curr. Opin. Struct. Biol. 13(2), 193–202 (2003)

    Article  Google Scholar 

  3. Edwards, J.S., Ramakrishna, R., Schilling, C.H., Palsson, B.O.: Metabolic flux balance analysis. In: Lee, S.Y., Papoutsakis, E.T. (eds.) Metabolic Engineering, Marcel Deker,New York (1999)

    Google Scholar 

  4. Flach, P., Kakas, A.C.: Abductive and inductive reasoning: Background and issues. In: Flach, P.A., Kakas, A.C. (eds.) Abductive and Inductive Reasoning, Pure and Applied Logic, Kluwer, Dordrecht (2000)

    Google Scholar 

  5. Flach, P.A., Kakas, A.C. (eds.): Abductive and Inductive Reasoning. Pure and Applied Logic. vol. 200. Kluwer, Dordrecht

    Google Scholar 

  6. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using bayesian networks to analyze expression data. J. of Comp. Bio. 7, 601–620 (2000)

    Article  Google Scholar 

  7. Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Uncertainty in Artificial Intelligence: Proceedings of the Fourteenth Conference (UAI 1998), pp. 139–147. Morgan Kaufmann Publishers, San Francisco (1998)

    Google Scholar 

  8. Goodwin, B.C.: Oscillatory organization in cells, a dynamic theory of cellular control processes. Academic Press, New York (1963)

    Google Scholar 

  9. Hess, B., Boiteux, A.: Oscillatory organization in cells, a dynamic theory of cellular control processes. Hoppe-Seylers Zeitschrift fur Physiologische Chemie 349, 1567–1574 (1968)

    Article  Google Scholar 

  10. Imoto, S., Goto, T., Miyano, S.: Estimation of genetic networks and functional structures between genes by using bayesian networks and nonparametric regression. In: Proceeding of Pacific Symposium on Biocomputing, pp. 175–186 (2002)

    Google Scholar 

  11. Inoue, K.: Induction, abduction and consequence-finding. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 65–79. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Inoue, K.: Inverse entailment for full clausal theories. In: LICS 2001 Workshop on Logic and Learning (2001)

    Google Scholar 

  13. Ito, K., Yamamoto, A.: Finding hypotheses from examples by computing the least generlisation of bottom clauses. In: Arikawa, S., Motoda, H. (eds.) DS 1998. LNCS (LNAI), vol. 1532, pp. 303–314. Springer, Heidelberg (1998)

    Google Scholar 

  14. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)

    Article  Google Scholar 

  15. Kakas, C., Denecker, M.: Abduction in logic programming. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2407, pp. 402–436. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Kakas, C., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of Logic and Computation 2(6), 719–770 (1993)

    Article  MathSciNet  Google Scholar 

  17. Kakas, A.C., Riguzzi, F.: Abductive concept learning. New Generation Computing 18, 243–294 (2000)

    Article  Google Scholar 

  18. King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.K.G., Bryant, C.H., Muggleton, S.H., Kell, D.B., Oliver, S.G.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004)

    Article  Google Scholar 

  19. Muggleton, S.H., Bryant, C.H.: Theory completion using inverse entailment. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 130–146. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Muggleton, S.H., Tamaddoni-Nezhad, A., Watanabe, H.: Induction of enzyme classes from biological databases. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 269–280. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Papin, J.A., Price, N.D., Wiback, S.J., Fell, D.A., Palsson, B.O.: Metabolic pathways in the post-genome era. Trends Biochem. Sci. 28(5), 250–258 (2003)

    Article  Google Scholar 

  22. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabasi, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)

    Article  Google Scholar 

  23. Ray, O., Broda, K., Russo, A.: Hybrid Abductive Inductive Learning: a Generalisation of Progol. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 311–328. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Tamaddoni-Nezhad, A., Muggleton, S., Bang, J.: A bayesian model for metabolic pathways. In: International Joint Conference on Artificial Intelligence (IJCAI 2003) Workshop on Learning Statistical Models from Relational Data, pp. 50–57 (2003)

    Google Scholar 

  25. Tyson, J.J., Othmer, H.G.: The dynamics of feedback control circuits in biochemical pathways. Progress in Theoretical Biology 5, 1–62 (1978)

    Google Scholar 

  26. Varma, A., Palsson, B.O.: Metabolic flux balancing: Basic concepts, scientific and practical use. Bio/Technology 12, 994–998 (1994)

    Article  Google Scholar 

  27. A-System Webpage: http://www.cs.kuleuven.ac.be/~bertv/asystem/

  28. ALP-Systems Webpage: http://www.doc.ic.ac.uk/~or/abduction/alp.pl , http://www.cs.ucy.ac.cy/aclp/

  29. BRENDA Webpage: http://www.brenda.uni-koeln.de/

  30. KEGG Webpage: http://www.genome.ad.jp/kegg/

  31. LIGAND Webpage: http://www.genome.ad.jp/ligand/

  32. MetaLog Webpage: http://www.doc.ic.ac.uk/bioinformatics/metalog/

  33. Yamamoto, A.: Which hypotheses can be found with inverse entailment? In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS(LNAI), vol. 1297, pp. 296–308. Springer, Heidelberg (1997)

    Google Scholar 

  34. Yamamoto, A., Fronhöfer, B.: Finding hypotheses by generalizing residues hypotheses. pp.107–118 (September 2001)

    Google Scholar 

  35. Zupan, B., Bratko, I., Demsar, J., Beck, J.R., Kuspa, A., Shaulsky, G.: Abductive inference of genetic networks. AIME, 304–313 (2001)

    Google Scholar 

  36. Zupan, B., Bratko, I., Demsar, J., Juvan, P., Halter, J.A., Kuspa, A., Shaulsky, G.: Genepath: a system for automated construction of genetic networks from mutant data. Bioinformatics 19(3), 383–389 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tamaddoni-Nezhad, A., Kakas, A., Muggleton, S., Pazos, F. (2004). Modelling Inhibition in Metabolic Pathways Through Abduction and Induction. In: Camacho, R., King, R., Srinivasan, A. (eds) Inductive Logic Programming. ILP 2004. Lecture Notes in Computer Science(), vol 3194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30109-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30109-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22941-4

  • Online ISBN: 978-3-540-30109-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics