Skip to main content

Solving Constraints Between Lines in Euclidean Geometry

  • Conference paper
Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3192))

Abstract

We consider constraints satisfaction problems between lines in Euclidean geometry. Our language of constraints is based on the binary relation of parallelism. Our main results state that (1) solving constraints between lines in dimension 2 can be done in polynomial time whereas (2) solving constraints between lines in dimension 3 is NP-hard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J.: Maintaining knowledge about temporal intervals. Communications of the Association for Computing Machinery 26, 832–843 (1983)

    MATH  Google Scholar 

  2. Balbiani, P.: Raisonner à propos des droites et des cercles: réseaux de contraintes et systèmes déductifs, Reconnaissance des Formes et Intelligence Artificielle, RFIA (2004)

    Google Scholar 

  3. Bennett, B., Isli, A., Cohn, A.G.: When does a composition table provide a complete and tractable proof procedure for a relational constraint language? In: Proceedings of International Joint Conference on Artificial Intelligence, IJCAI (1997)

    Google Scholar 

  4. Clarke, B.: Individuals and points. Notre Dame Journal of Formal Logic 26, 61–75 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cui, Z., Cohn, A., Randell, D.: Qualitative and topological relationships in spatial databases. In: Abel, D.J., Ooi, B.-C. (eds.) SSD 1993. LNCS, vol. 692, pp. 296–315. Springer, Heidelberg (1993)

    Google Scholar 

  6. Condotta, J.-F.: Problèmes de satisfaction de contraintes spatiales: algorithmes et complexité, Thèse de l’université Paul Sabatier (2000)

    Google Scholar 

  7. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artificial Intelligence, 61–95 (1991)

    Google Scholar 

  8. Egenhofer, M.J.: Reasoning about binary topological relationships. In: Günther, O., Schek, H.-J. (eds.) SSD 1991. LNCS, vol. 525, pp. 143–160. Springer, Heidelberg (1991)

    Google Scholar 

  9. Frank, A.U.: Qualitative spatial reasoning about distances and directions in geographic space. Languages and Computing, 343–371 (1992)

    Google Scholar 

  10. Freska, C.: Using orientation information for qualitative spatial reasoning. In: Proceedings of COSIT 1992. LNCS, pp. 162–178. Springer, Heidelberg (1992)

    Google Scholar 

  11. Freuder, E.: A Sufficient condition for backtrack-free search. Journal of the ACM, 24–32 (1982)

    Google Scholar 

  12. Henkin, L., Suppes, P., Tarski, A.: The axiomatic method. North-Holland, Amsterdam (1959)

    MATH  Google Scholar 

  13. Ligozat, G.: Reasoning about cardinal directions. Journal ofVisual Languages and Computing 9, 23–44 (1998)

    Article  Google Scholar 

  14. Mackworth, A.: Consistency in networks of relations. Artificial Intelligence, 99–118 (1977)

    Google Scholar 

  15. Mackworth, A., Freuder, E.: The complexity of some polynomial network consistency algorithms for constraint satisfaction problems. Artificial Intelligence, 65–74 (1985)

    Google Scholar 

  16. Montanari, U.: Networks of constraints: Fundamental properties and application to picture processing. Information Sciences, 95–132 (1974)

    Google Scholar 

  17. Papadias, D., Theodoridis, T., Sellis, T., Egenhofer, M.J.: Topological relations in the world of minimum bounding rectangles: a study with R-trees. In: Proceedings in ACM SIGMOD 1995, pp. 92–103 (1995)

    Google Scholar 

  18. Papadimitriou, C.: Computational complexity. Addison Wesley, Reading (1994)

    MATH  Google Scholar 

  19. Randell, D., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) Proceedings of the Third International Conference on Principles of Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufman, San Francisco (1992)

    Google Scholar 

  20. Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: a maximal tractable fragment of the region connection calculus. In: Proceedings IJCAI 1997, Nagoya, Japan, pp. 522–527 (1997)

    Google Scholar 

  21. Sistla, A.P., Yu, C., Haddad, R.: Reasoning about Spatial Relations in Picture Retrieval Systems. In: Proceedings in VLDB 1994, pp. 570–581 (1994)

    Google Scholar 

  22. Skiadopoulos, S., Koubarakis, M.: Composing cardinal directions relations. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 299–317. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Vilain, M., Kautz, H.: Constraint propagation algorithms for temporal reasoning. In: Proceedings of the Fifth National Conference onArtificial Intelligence. American Association for Artificial Intelligence, pp. 377–382 (1986)

    Google Scholar 

  24. Zimmermann, K.: Enhancing qualitative spatial reasoning- Combining orientation and distance. In: Campari, I., Frank, A.U. (eds.) COSIT 1993. LNCS, vol. 716, pp. 69–76. Springer, Heidelberg (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balbiani, P., Challita, K. (2004). Solving Constraints Between Lines in Euclidean Geometry. In: Bussler, C., Fensel, D. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2004. Lecture Notes in Computer Science(), vol 3192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30106-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30106-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22959-9

  • Online ISBN: 978-3-540-30106-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics