Advertisement

Improved Data Retrieval Using Semantic Transformation

  • Barry G. T. Lowden
  • Jerome Robinson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3180)

Abstract

Semantic query optimisation uses knowledge about properties of the data, represented as a set of subset descriptor rules, to transform a query into another form that can be executed in a more efficient manner but still yields the same result as the original query. Commonly this ’semantic knowledge’ in the form of rules is generated either during the query process itself or else is constructed in advance according to defined heuristics. Over a period of time the rule set may, therefore, become very large and the number of semantically equivalent queries that may be derived rises exponentially. Each rule use creates a new equivalent query. The problem is to identify one near optimal alternative query in a time that is minimal and also short relative to the overall query execution time. In this paper we propose a method for measuring the effectiveness of each rule and present a fast algorithm which selects the most cost effective transformations to directly yield the optimal alternative query. Experiments carried out on a large publicly available dataset show worthwhile savings using the approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blasgen, M.W., Eswaran, K.P.: Storage and access in relational data bases. IBM Systems Journal 16(4), 363–377 (1977)CrossRefGoogle Scholar
  2. 2.
    Cardenas, A.F.: Analysis and performance of inverted data base structures. Communications of the ACM 18(5), 253–263 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chakravarthy, S., Grant, J., Minker, J.: Logic-based approach to semantic query optimisation. ACM on Database Sys. 15(2), 162–207 (1990)CrossRefGoogle Scholar
  4. 4.
    Chan, K.C., Wong, A.K.C.: A statistical test for extracting classificatory knowledge from databases. In: Knowledge Discovery in Databases, pp. 107–123 (1991)Google Scholar
  5. 5.
    Graefe, G., Dewitt, D.: The EXODUS optimiser generator. In: Proc. ACM SIGMOD Conference on Management of Data, pp. 160–171 (1987)Google Scholar
  6. 6.
    Han, J., Cai, Y., Cercone, N.: Data-driven discovery of quantitative rules in relational databases. IEEE Trans. Knowledge and Data Eng. 5(1), 29–40 (1993)CrossRefGoogle Scholar
  7. 7.
    Hsu, C., Knoblock, C.A.: Rule induction for semantic query optimization. In: Proceedings of the 11th International Conference on Machine Learning, pp. 112–120 (1994)Google Scholar
  8. 8.
    Lowden, B.G.T.: An Approach to Multikey Sequencing in an equiprobable keyterm retrieval situation. In: Proceedings of the 8th ACM SIGIR International Conference on Research and Development in Information Retrieval, pp. 92–96 (1985)Google Scholar
  9. 9.
    Lowden, B.G.T., Robinson, J., Lim, K.Y.: A semantic query optimiser using automatic rule derivation. In: Proc. WITS 1995, 5th Annual Workshop on Information Technologies and Systems, pp. 68–76 (1995)Google Scholar
  10. 10.
    Lowden, B.G.T., Robinson, J.: A statistical approach to rule selection in semantic query optimisation. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1999. LNCS, vol. 1609, pp. 330–339. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Mackert, L.F., Lohman, G.M.: R* optimizer validation and performance evaluation for local queries. In: Proc. ACM SIGMOD Conference, pp. 84–95 (1986)Google Scholar
  12. 12.
    Mannila, H.: Methods and problems in data mining. In: Proc. 6th Intl Conference on Database Theory, pp. 41–55 (1997)Google Scholar
  13. 13.
    Piatetsky-Shapiro, G., Matheus, C.: Measuring data dependencies in large databases. In: Proc. AAAI Workshop on Knowledge Discovery in Databases, pp. 162–173 (1993)Google Scholar
  14. 14.
    Robinson, J., Lowden, B.G.T.: Data analysis for query processing. In: Proc. 2nd International Symposium on Intelligent Data Analysis, London, pp. 447–458 (1997)Google Scholar
  15. 15.
    Robinson, J., Lowden, B.G.T.: Semantic optimisation and rule graphs. In: Proc. 5th KRDB Workshop (1998), http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-10/
  16. 16.
    Robinson, J., Lowden, B.G.T.: Attribute-pair range rules. In: Quirchmayr, G., Bench-Capon, T.J.M., Schweighofer, E. (eds.) DEXA 1998. LNCS, vol. 1460, pp. 680–691. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Shekhar, S., Srivastava, J., Dutta, S.: A formal model of trade-off between optimisation and execution costs in semantic query optimization. In: Proc. 14th VLDB Conference, pp. 457–467 (1988)Google Scholar
  18. 18.
    Shekhar, S., Hamidzadeh, B., Kohli, A.: Learning transformation rules for semantic query optimisation: A data-driven approach. IEEE Trans. Data & Knowledge Engineering 5(6), 950–964 (1993)CrossRefGoogle Scholar
  19. 19.
    Shenoy, S.T., Ozsoyoglu, Z.M.: Design and implementation of semantic query optimiser. IEEE Transactions on Knowledge and Data Eng. 1(3), 344–361 (1989)CrossRefGoogle Scholar
  20. 20.
    Siegel, M., Sciore, E., Salveter, S.: A method for automatic rule derivation to support semantic query optimisation. ACM Trans. Database Systems 17(4), 563–600 (1992)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Yu, C., Sun, W.: Automatic knowledge acquisition and maintenance for semantic query optimisation. IEEE Trans. Knowledge and Data Engineering 1(3), 362–375 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Barry G. T. Lowden
    • 1
  • Jerome Robinson
    • 1
  1. 1.Department of Computer ScienceUniversity of EssexColchester, EssexU.K.

Personalised recommendations