Partially Ordered Preferences Applied to the Site Location Problem in Urban Planning

  • Sylvain Lagrue
  • Rodolphe Devillers
  • Jean-Yves Besqueut
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3180)


This paper presents an application that aims at identifying optimal locations based on partially ordered constraints. It combines a tool developed in this project that allows the management of partially ordered constraints and a Geographical Information System (GIS) allowing spatial data mapping and analysis.

Experts in urban planning provides constraints, being in our application a combination of legal constraints and preferences expressed by the property developer. As these constraints can hardly be totally ordered because they are not comparable, constraints are partially ordered.

The experiment was performed using about 3800 cadastral parcels and 12 different constraints, each parcel being characterised for each constraint using GIS analysis operators. Data are then processed by the program mpropre (Managing PaRtially Ordered PREferences) that provides in output one or several optimal parcels. Results are finally validated by an expert and using ortho-images of the geographic area of interest.


Geographical Information System Cost Constraint Geographical Information System Software Binary Constraint Sewer Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Church, R.L.: Location modelling and GIS. In: Longley, P., Goodchild, M., Maguire, D., Rhind, D. (eds.) Geographical information systems, New York, 2nd edn., pp. 293–303. John Wiley, Chichester (1999)Google Scholar
  2. 2.
    Schärlig, A.: Où construire l’usine? La localisation optimale d’une activité industrielle dans la pratique. Dunod (1973)Google Scholar
  3. 3.
    Pereira, J.M., Duckstein, L.: A multiple criteria decision-making approach to GISbased land suitability evaluation. International Journal of Geographical Information Systems 7, 407–424 (1993)CrossRefGoogle Scholar
  4. 4.
    Joerin, F.: Méthode multicritère d’aide à la décision et SIG pour la recherche d’un site. Revue internationale de géomatique 1 (1995)Google Scholar
  5. 5.
    Monmonier, M.: A case study in the misuse of GIS: Siting a low-level radioactive waste disposal facility in new york state. In: Proceedings of the conference on Law and Information Policy for Spatial Databases, Tempe, USA (1994)Google Scholar
  6. 6.
    Halpern, J.Y.: Defining relative likelihood in partially-ordered preferential structures. Journal of AI Research 7, 1–24 (1997)zbMATHGoogle Scholar
  7. 7.
    Cayrol, C., Royer, V., Saurel, C.: Management of preferences in assumption-based reasoning. In: Valverde, L., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 1992. LNCS, vol. 682, pp. 13–22. Springer, Heidelberg (1993)Google Scholar
  8. 8.
    Benferhat, S., Dubois, D., Lang, J., Prade, H., Saffiotti, A., Smets, P.: Reasoning under inconsistency based on implicitly-specified partial qualitative probability relations: a unified framework. In: Proceedings of the 15th National Conference on Artificial Intelligence (AAAI 1998), pp. 121–126 (1998)Google Scholar
  9. 9.
    Benferhat, S., Lagrue, S., Papini, O.: Reasoning with partially ordered information in a possibilistic framework. Fuzzy Sets and Systems 144, 25–41 (2004)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sylvain Lagrue
    • 1
  • Rodolphe Devillers
    • 2
    • 3
  • Jean-Yves Besqueut
    • 4
  1. 1.CRILCNRS Université d’ArtoisLensFrance
  2. 2.Centre de Recherche en GéomatiqueUniversité LavalQuébecCanada
  3. 3.Institut Francilien des GéoSciencesUniversité de Marne-la-ValléeMarne la ValléeFrance
  4. 4.SOMEIMarseilleFrance

Personalised recommendations