Skip to main content

Hypoxia in the Pathogenesis of Retinal Disease

  • Chapter
Retinal Vascular Disease

Abstract

Oxygen cannot passively diffuse for more than a radius of 100 µm around capillaries. As a result, adequate O2 supply to each cell depends on effective regulation of the integrity and function of the vascular network. On the other hand, high O2 tissue levels would result in reactive oxygen species (ROS) generation and cellular damage. Therefore, an optimal O2 concentration is needed to avoid hypoxia or ROS-mediated cellular injury. The retinal tissue is very active metabolically and, therefore, exquisitely dependent on adequate O2 supply for its function [4]. The delivery of oxygen to the retina is dependent not only on systemic blood pressure, hemoglobin content and integrity of local vasculature, but on the level of intraocular pressure and local autoregulatory mechanisms as well. Hypoxia and its sequelae are implicated in the pathogenesis of most retinal diseases, especially those that involve pathologic neovascularization. This is due to the potent stimulation of production of vascular endothelial growth factor (VEGF), mediated by the hypoxia-inducible factor (HIF)-1 pathway, in response to hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamis AP, et al. (1996) Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch Ophthalmol 114(1):66–71

    PubMed  CAS  Google Scholar 

  2. Akiyama H., et al. (2004) Inhibition of ocular angiogenesis by an adenovirus carrying the human von Hippel-Lindau tumor-suppressor gene in vivo. Invest Ophthalmol Vis Sci 45(5):1289–96

    Article  PubMed  Google Scholar 

  3. Alon T, et al. (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1(10):1024–8

    Article  PubMed  CAS  Google Scholar 

  4. Ames A, 3rd, et al. (1992) Energy metabolism of rabbit retina as related to function: high cost of Na+ transport. J Neurosci 12(3):840–53

    PubMed  CAS  Google Scholar 

  5. Antonetti DA, et al. (1998) Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes 47(12):1953–9

    Article  PubMed  CAS  Google Scholar 

  6. Azad R, Chandra P (2005) Retinopathy of prematurity. J Indian Med Assoc 103(7):370–2

    PubMed  Google Scholar 

  7. Barnstable CJ, Tombran-Tink J (2004) Neuroprotective and antiangiogenic actions of PEDF in the eye: molecular targets and therapeutic potential. Prog Retin Eye Res 23(5):561–77

    Article  PubMed  CAS  Google Scholar 

  8. Beauchamp MH, et al. (2002) Platelet-activating factor in vasoobliteration of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 43(10):3327–37

    PubMed  Google Scholar 

  9. Becerra SP, Amaral J (2002) Erythropoietin-an endogenous retinal survival factor. N Engl JMed 347(24):1968–70

    Article  CAS  Google Scholar 

  10. Bergeron M, et al. (1999) Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci 11(12):4159–70

    Article  PubMed  CAS  Google Scholar 

  11. Bhisitkul RB, et al. (2005) An antisense oligodeoxynucleotide against vascular endothelial growth factor in a nonhuman primate model of iris neovascularization. Arch Ophthalmol 123(2):214–9

    Article  PubMed  CAS  Google Scholar 

  12. Blancher C, et al. (2000) Relationship of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression to vascular endothelial growth factor induction and hypoxia survival in human breast cancer cell lines. Cancer Res 60(24):7106–13

    PubMed  CAS  Google Scholar 

  13. Boeri D, Maiello M, Lorenzi M (2001) Increased prevalence of microthromboses in retinal capillaries of diabetic individuals. Diabetes 50(6):1432–9

    Article  PubMed  CAS  Google Scholar 

  14. Bohling T, et al. (1996) Expression of growth factors and growth factor receptors in capillary hemangioblastoma. J Neuropathol Exp Neurol 55(5):522–7

    PubMed  CAS  Google Scholar 

  15. Bojic L, et al. (1993) The effect of hyperbaric oxygen breathing on the visual field in glaucoma. Acta Ophthalmol (Copenh) 71(3):315–9

    Article  CAS  Google Scholar 

  16. Boyd SR, et al. (2002) Correlation of increased vascular endothelial growth factor with neovascularization and permeability in ischemic central vein occlusion. Arch Ophthalmol 120(12):1644–50

    PubMed  CAS  Google Scholar 

  17. Brafman A, et al. (2004) Inhibition of oxygen-induced retinopathy in RTP801-deficient mice. Invest Ophthalmol Vis Sci 45(10):3796–805

    Article  PubMed  Google Scholar 

  18. Brion LP, Bell EF, Raghuveer TS (2003) Vitamin E supplementation for prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev 4:CD003665

    PubMed  Google Scholar 

  19. Brooks SE, et al. (2001) Reduced severity of oxygen-induced retinopathy in eNOS-deficient mice. Invest Ophthalmol Vis Sci 42(1):222–8

    PubMed  CAS  Google Scholar 

  20. Bruick RK (2000) Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A 97(16):9082–7

    Article  PubMed  CAS  Google Scholar 

  21. Calvert JW, Zhou C, Zhang JH (2004) Transient exposure of rat pups to hyperoxia at normobaric and hyperbaric pressures does not cause retinopathy of prematurity. Exp Neurol 189(1):150–61

    Article  PubMed  CAS  Google Scholar 

  22. Chakrabarti S, et al. (1998) Augmented retinal endothelin-1, endothelin-3, endothelinA and endothelinB gene expression in chronic diabetes. Curr Eye Res 17(3):301–7

    Article  PubMed  CAS  Google Scholar 

  23. Chen D, et al. (2003) Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function. J Biol Chem 278(16):13595–8

    Article  PubMed  CAS  Google Scholar 

  24. Corn PG, et al. (2003) Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel-Lindau protein. Nat Genet 35(3):229–37

    Article  PubMed  CAS  Google Scholar 

  25. Czyzyk-Krzeska MF, Meller J (2004) von Hippel-Lindau tumor suppressor: not only HIF’s executioner. Trends Mol Med 10(4):146–9

    Article  PubMed  CAS  Google Scholar 

  26. Danis RP, Bingaman DP (1997) Insulin-like growth factor-1 retinal microangiopathy in the pig eye. Ophthalmology 104(10):1661–9

    PubMed  CAS  Google Scholar 

  27. Dawson DW, et al. (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285(5425):245–8

    Article  PubMed  CAS  Google Scholar 

  28. Dawson TM (2002) Preconditioning-mediated neuroprotection through erythropoietin? Lancet 359(9301):96–7

    Article  PubMed  Google Scholar 

  29. Digicaylioglu M, Lipton SA (2001) Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature 412(6847):641–7

    Article  PubMed  CAS  Google Scholar 

  30. Doonan F, Donovan M, Cotter TG (2003) Caspase-independent photoreceptor apoptosis in mouse models of retinal degeneration. J Neurosci 23(13):5723–31

    PubMed  CAS  Google Scholar 

  31. Dreyer EB, et al. (1996) Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol 114(3):299–305

    PubMed  CAS  Google Scholar 

  32. Ellisen LW, et al. (2002) REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell 10(5): 995–1005

    Article  PubMed  CAS  Google Scholar 

  33. Ema M, et al. (1999) Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J 18(7):1905–14

    Article  PubMed  CAS  Google Scholar 

  34. Fels DR, Koumenis C (2005) HIF-1alpha and p53: the ODD couple? Trends Biochem Sci 30(8):426–9

    Article  PubMed  CAS  Google Scholar 

  35. Ferrara N, et al. (1992) Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 13(1):18–32

    Article  PubMed  CAS  Google Scholar 

  36. Finkelstein D (1996) Laser therapy for central retinal vein obstruction. Curr Opin Ophthalmol 7(3):80–3

    Article  PubMed  CAS  Google Scholar 

  37. Fisher JW(1997) Erythropoietin: physiologic and pharmacologic aspects. Proc Soc Exp Biol Med 216(3):358–69

    Google Scholar 

  38. Fisher JW (2003) Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood) 228(1):1–14

    CAS  Google Scholar 

  39. Flamme I, Krieg M, Plate KH (1998) Up-regulation of vascular endothelial growth factor in stromal cells of hemangioblastomas is correlated with up-regulation of the transcription factor HRF/HIF-2alpha. AmJ Pathol 153(1):25–9

    CAS  Google Scholar 

  40. Folkman J (2000) Incipient angiogenesis. J Natl Cancer Inst 92(2):94–5

    Article  PubMed  CAS  Google Scholar 

  41. Gerber HP, et al. (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273(46):30336–43

    Article  PubMed  CAS  Google Scholar 

  42. Grimm C, et al. (2002) HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med 8(7):718–24

    Article  PubMed  CAS  Google Scholar 

  43. Guillemin K, Krasnow MA (1997) The hypoxic response: huffing and HIFing. Cell 89(1):9–12

    Article  PubMed  CAS  Google Scholar 

  44. Hatva E, et al. (1996) Vascular growth factors and receptors in capillary hemangioblastomas and hemangiopericytomas. Am J Pathol 148(3):763–75

    PubMed  CAS  Google Scholar 

  45. Hayashi A, Kim HC, de Juan E, Jr (1999) Alterations in protein tyrosine kinase pathways following retinal vein occlusion in the rat. Curr Eye Res 18(3):231–9

    Article  PubMed  CAS  Google Scholar 

  46. Huang LE, et al. (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 95(14):7987–92

    Article  PubMed  CAS  Google Scholar 

  47. Ijichi A, Sakuma S, Tofilon PJ (1995) Hypoxia-induced vascular endothelial growth factor expression in normal rat astrocyte cultures. Glia 14(2):87–93

    Article  PubMed  CAS  Google Scholar 

  48. Inomata Y, et al. (2004) Elevated erythropoietin in vitreous with ischemic retinal diseases. Neuroreport 15(5): 877–9

    Article  PubMed  CAS  Google Scholar 

  49. Iyer NV, et al. (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12(2):149–62

    PubMed  CAS  Google Scholar 

  50. Iyer NV, Leung SW, Semenza GL (1998) The human hypoxia-inducible factor 1alpha gene: HIF1A structure and evolutionary conservation. Genomics 52(2):159–65

    Article  PubMed  CAS  Google Scholar 

  51. Jewell UR, et al. (2001) Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J 15(7):1312–4

    PubMed  CAS  Google Scholar 

  52. Jiang BH, et al. (1997) Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem 272(31):19253–60

    Article  PubMed  CAS  Google Scholar 

  53. Joussen AM, et al. (2001) In vivo retinal gene expression in early diabetes. Invest Ophthalmol Vis Sci 42(12):3047–57

    PubMed  CAS  Google Scholar 

  54. Joussen AM, et al. (2002) Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. FASEB J 16(3):438–40

    PubMed  CAS  Google Scholar 

  55. Joussen AM, et al. (2002) Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am J Pathol 160(2):501–9

    PubMed  CAS  Google Scholar 

  56. Joussen AM, et al. (2003) Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic blood-retinal barrier breakdown in a model of streptozotocin-induced diabetes. FASEB J 17(1):76–8

    PubMed  CAS  Google Scholar 

  57. Kallio PJ, et al. (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J 17(22):6573–86

    Article  PubMed  CAS  Google Scholar 

  58. Kallio PJ, et al. (1999) Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem 274(10):6519–25

    Article  PubMed  CAS  Google Scholar 

  59. Kasahara E, et al. (2005) SOD2 protects against oxidation-induced apoptosis in mouse retinal pigment epithelium: implications for age-related macular degeneration. Invest Ophthalmol Vis Sci 46(9):3426–34

    Article  PubMed  Google Scholar 

  60. Katz ML, Robison WG, Jr (1988) Autoxidative damage to the retina: potential role in retinopathy of prematurity. Birth Defects Orig Artic Ser 24(1):237–48

    PubMed  CAS  Google Scholar 

  61. Klein R, et al. (1994) The Wisconsin Epidemiologic Study of diabetic retinopathy. XIV. Ten-year incidence and progression of diabetic retinopathy. Arch Ophthalmol 112(9):1217–28

    PubMed  CAS  Google Scholar 

  62. Klein R, Klein BE, Moss SE (1989) The Wisconsin epidemiological study of diabetic retinopathy: a review. Diabetes Metab Rev 5(7):559–70

    PubMed  CAS  Google Scholar 

  63. Koizumi K, et al. (2003) Contribution of TNF-alpha to leukocyte adhesion, vascular leakage, and apoptotic cell death in endotoxin-induced uveitis in vivo. Invest Ophthalmol Vis Sci 44(5):2184–91

    Article  PubMed  Google Scholar 

  64. Koshiji M, et al. (2005) HIF-1alpha induces genetic instability by transcriptionally downregulating MutSalpha expression. Mol Cell 17(6):793–803

    Article  PubMed  CAS  Google Scholar 

  65. Kristian T, Siesjo BK (1996) Calcium-related damage in ischemia. Life Sci 59(5–6):357–67

    Article  PubMed  CAS  Google Scholar 

  66. Kubasiak LA, et al. (2002) Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci U S A 99(20):12825–30

    Article  PubMed  CAS  Google Scholar 

  67. Lee JY, et al. (1998) Loss of heterozygosity and somatic mutations of the VHL tumor suppressor gene in sporadic cerebellar hemangioblastomas. Cancer Res 58(3):504–8

    PubMed  CAS  Google Scholar 

  68. Lemasters JJ (1999) Mechanisms of hepatic toxicity. V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol 276(1):G1–6

    PubMed  CAS  Google Scholar 

  69. Leske DA, et al. (2004) The role of VEGF and IGF-1 in a hypercarbic oxygen-induced retinopathy ratmodel of ROP. Mol Vis 10:43–50

    PubMed  CAS  Google Scholar 

  70. Levy AP, et al. (1995) Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 270(22):13333–40

    Article  PubMed  CAS  Google Scholar 

  71. Levy AP, Levy NS, Goldberg MA (1996) Hypoxia-inducible protein binding to vascular endothelial growth factor mRNA and its modulation by the von Hippel-Lindau protein. J Biol Chem 271(41):25492–7

    Article  PubMed  CAS  Google Scholar 

  72. Levy AP, Levy NS, Goldberg MA (1996) Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 271(5):2746–53

    Article  PubMed  CAS  Google Scholar 

  73. Lian XY, Stringer JL (2004) Energy failure in astrocytes increases the vulnerability of neurons to spreading depression. Eur J Neurosci 19(9):2446–54

    Article  PubMed  Google Scholar 

  74. Linsenmeier RA, et al. (1998) Retinal hypoxia in long-term diabetic cats. Invest Ophthalmol Vis Sci 39(9): 1647–57

    PubMed  CAS  Google Scholar 

  75. Liu LX, et al. (2002) Stabilization of vascular endothelial growth factor mRNA by hypoxia-inducible factor 1. Biochem Biophys Res Commun 291(4):908–14

    Article  PubMed  CAS  Google Scholar 

  76. Maher ER, Kaelin WG, Jr (1997) vonHippel-Lindau disease. Medicine (Baltimore) 76(6):381–91

    Article  CAS  Google Scholar 

  77. Makino Y, et al. (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414(6863):550–4

    Article  PubMed  CAS  Google Scholar 

  78. Maltepe E, et al. (1997) Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386(6623):403–7

    Article  PubMed  CAS  Google Scholar 

  79. Mazure NM, et al. (1997) Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 90(9):3322–31

    PubMed  CAS  Google Scholar 

  80. Mervin K, et al. (1999) Limiting photoreceptor death and deconstruction during experimental retinal detachment: the value of oxygen supplementation. Am J Ophthalmol 128(2):155–64

    Article  PubMed  CAS  Google Scholar 

  81. Meyer-Schwickerath R, et al. (1993) Vitreous levels of the insulin-like growth factors I and II, and the insulin-like growth factor binding proteins 2 and 3, increase in neovascular eye disease. Studies in nondiabetic and diabetic subjects. J Clin Invest 92(6):2620–5

    Article  PubMed  CAS  Google Scholar 

  82. Mitsiades CS, Mitsiades N, Koutsilieris M (2004) The Akt pathway: molecular targets for anti-cancer drug development. Curr Cancer Drug Targets 4(3):235–56

    Article  PubMed  CAS  Google Scholar 

  83. Morita M, et al. (2003) HLF/HIF-2alpha is a key factor in retinopathy of prematurity in association with erythropoietin. EMBO J 22(5):1134–46

    Article  PubMed  CAS  Google Scholar 

  84. Mukhopadhyay D, et al. (1997) The von Hippel-Lindau tumor suppressor gene product interacts with Sp1 to repress vascular endothelial growth factor promoter activity. Mol Cell Biol 17(9):5629–39

    PubMed  CAS  Google Scholar 

  85. Murata M, Kador PF, Sato S (2000) Vascular endothelial growth factor (VEGF) enhances the expression of receptors and activates mitogen-activated protein (MAP) kinase of dog retinal capillary endothelial cells. J Ocul Pharmacol Ther 16(4):383–91

    PubMed  CAS  Google Scholar 

  86. Na X, et al. (2003) Identification of the RNA polymerase II subunit hsRPB7 as a novel target of the von Hippel-Lindau protein. EMBO J 22(16):4249–59

    Article  PubMed  CAS  Google Scholar 

  87. Neely KA, Gardner TW (1998) Ocular neovascularization: clarifying complex interactions. Am J Pathol 153(3): 665–70

    PubMed  CAS  Google Scholar 

  88. Neufeld AH, Sawada A, Becker B (1999) Inhibition of nitricoxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci USA 96(17):9944–8

    Article  PubMed  CAS  Google Scholar 

  89. Nguyen QD, et al. (2004) Supplemental oxygen improves diabetic macular edema: a pilot study. Invest Ophthalmol Vis Sci 45(2):617–24

    Article  PubMed  Google Scholar 

  90. Niesman MR, Johnson KA, Penn JS (1997) Therapeutic effect of liposomal superoxide dismutase in an animal model of retinopathy of prematurity. Neurochem Res 22(5):597–605

    Article  PubMed  CAS  Google Scholar 

  91. Nork TM, et al. (2000) Protection of ganglion cells in experimental glaucoma by retinal laser photocoagulation. Arch Ophthalmol 118(9):1242–50

    PubMed  CAS  Google Scholar 

  92. Nunes I, et al. (2001) c-abl is required for the development of hyperoxia-induced retinopathy. J Exp Med 193(12):1383–91

    Article  PubMed  CAS  Google Scholar 

  93. Palmer EA (2003) Implications of the natural course of retinopathy of prematurity. Pediatrics 111(4):885–6

    Article  PubMed  Google Scholar 

  94. Pe’er J, et al. (1998) Vascular endothelial growth factor upregulation in human central retinal vein occlusion. Ophthalmology 105(3):412–6

    Article  CAS  Google Scholar 

  95. Penn JS, Li S, Naash MI (2000) Ambient hypoxia reverses retinal vascular attenuation in a transgenic mouse model of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 41(12):4007–13

    PubMed  CAS  Google Scholar 

  96. Poulaki V, et al. (2002) Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1alpha and VEGF. J Clin Invest 109(6):805–15

    Article  PubMed  CAS  Google Scholar 

  97. Poulaki V, et al. (2003) Regulation of vascular endothelial growth factor expression by insulin-like growth factor I in thyroid carcinomas. J Clin Endocrinol Metab 88(11):5392–8

    Article  PubMed  CAS  Google Scholar 

  98. Poulaki V, et al. (2004) Insulin-like growth factor-I plays a pathogenetic role in diabetic retinopathy. Am J Pathol 165(2):457–69

    PubMed  CAS  Google Scholar 

  99. Pournaras CJ, et al. (1990) Scatter photocoagulation restores tissue hypoxia in experimental vasoproliferative microangiopathy in miniature pigs. Ophthalmology 97(10):1329–33

    PubMed  CAS  Google Scholar 

  100. Provis JM, et al. (1997) Development of the human retinal vasculature: cellular relations and VEGF expression. Exp Eye Res 65(4):555–68

    Article  PubMed  CAS  Google Scholar 

  101. Pugh CW, et al. (1997) Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem 272(17):11205–14

    Article  PubMed  CAS  Google Scholar 

  102. Punglia RS, et al. (1997) Regulation of vascular endothelial growth factor expression by insulin-like growth factor I. Diabetes 46(10):1619–26

    Article  PubMed  CAS  Google Scholar 

  103. Reynolds JD (2001) The management of retinopathy of prematurity. Paediatr Drugs 3(4):263–72

    Article  PubMed  CAS  Google Scholar 

  104. Rosenbaum DM, et al. (1998) The role of the p53 protein in the selective vulnerability of the inner retina to transient ischemia. Invest Ophthalmol Vis Sci 39(11):2132–9

    PubMed  CAS  Google Scholar 

  105. Ryan HE, Lo J, Johnson RS (1998) HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 17(11):3005–15

    Article  PubMed  CAS  Google Scholar 

  106. Sakai T, et al. (2001) The ability of hyperoxia to limit the effects of experimental detachment in cone-dominated retina. Invest Ophthalmol Vis Sci 42(13):3264–73

    PubMed  CAS  Google Scholar 

  107. Salceda S, Caro J (1997) Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272(36):22642–7

    Article  PubMed  CAS  Google Scholar 

  108. Selak MA, et al. (2005) Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7(1):77–85

    Article  PubMed  CAS  Google Scholar 

  109. Semenza GL (2000) HIF-1 and human disease: one highly involved factor. Genes Dev 14(16):1983–91

    PubMed  CAS  Google Scholar 

  110. Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda) 19: 176–82

    CAS  Google Scholar 

  111. Semenza GL, et al. (1996) Assignment of the hypoxia-inducible factor 1alpha gene to a region of conserved synteny on mouse chromosome 12 and human chromosome 14q. Genomics 34(3):437–9

    Article  PubMed  CAS  Google Scholar 

  112. Senger DR, et al. (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219(4587):983–5

    Article  PubMed  CAS  Google Scholar 

  113. Sharma J, et al. (2003) Ibuprofen improves oxygen-induced retinopathy in a mouse model. Curr Eye Res 27(5):309–14

    Article  PubMed  Google Scholar 

  114. Shih SC, et al. (2003) Selective stimulation of VEGFR-1 prevents oxygen-induced retinal vascular degeneration in retinopathy of prematurity. J Clin Invest 112(1):50–7

    Article  PubMed  CAS  Google Scholar 

  115. Shoshani T, et al. (2002) Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol 22(7):2283–93

    Article  PubMed  CAS  Google Scholar 

  116. Smith LE (2003) Pathogenesis of retinopathy of prematurity. Semin Neonatol 8(6):469–73

    Article  PubMed  Google Scholar 

  117. Sowter HM, et al. (2001) HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 61(18):6669–73

    PubMed  CAS  Google Scholar 

  118. Spranger J, et al. (2001) Loss of the antiangiogenic pigment epithelium-derived factor in patients with angiogenic eye disease. Diabetes 50(12):2641–5

    Article  PubMed  CAS  Google Scholar 

  119. Staller P, et al. (2003) Chemokine receptor CXCR4 down-regulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425(6955):307–11

    Article  PubMed  CAS  Google Scholar 

  120. Stefansson E (2001) The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmol Scand 79(5):435–40

    Article  PubMed  CAS  Google Scholar 

  121. Stone J, et al. (1996) Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Invest Ophthalmol Vis Sci 37(2):290–9

    PubMed  CAS  Google Scholar 

  122. Stone J, et al. (1999) Mechanisms of photoreceptor death and survival in mammalian retina. Prog Retin Eye Res 18(6):689–735

    Article  PubMed  CAS  Google Scholar 

  123. Sutter CH, Laughner E, Semenza GL (2000) Hypoxia-inducible factor 1alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci USA 97(9): 4748–53

    Article  PubMed  CAS  Google Scholar 

  124. Tezel G, Wax MB (2000) Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci 20(23):8693–700

    PubMed  CAS  Google Scholar 

  125. Tezel G, Wax MB (2004) Hypoxia-inducible factor 1alpha in the glaucomatous retina and optic nerve head. Arch Ophthalmol 122(9):1348–56

    Article  PubMed  CAS  Google Scholar 

  126. Travis GH (1991) Molecular characterization of the retinal degeneration slow (rds) mutation in mouse. Prog Clin Biol Res 362:87–114

    PubMed  CAS  Google Scholar 

  127. Tsurumi Y, et al. (1997) Reciprocal relation between VEGF and NO in the regulation of endothelial integrity. Nat Med 3(8):879–86

    Article  PubMed  CAS  Google Scholar 

  128. Uchida T, et al. (2004) Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha. J Biol Chem 279(15):14871–8

    Article  PubMed  CAS  Google Scholar 

  129. Vasquez G, et al. (2004) Role of adenosine transport in gestational diabetes-induced L-arginine transport and nitric oxide synthesis in human umbilical vein endothelium. J Physiol 560(1):111–22

    Article  PubMed  CAS  Google Scholar 

  130. Vortmeyer AO, et al. (1997) von Hippel-Lindau gene deletion detected in the stromal cell component of a cerebellar hemangioblastoma associated with von Hippel-Lindau disease. Hum Pathol 28(5):540–3

    Article  PubMed  CAS  Google Scholar 

  131. Wang GL, et al. (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92(12):5510–4

    Article  PubMed  CAS  Google Scholar 

  132. Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270(3):1230–7

    Article  PubMed  CAS  Google Scholar 

  133. Wangsa-Wirawan ND, Linsenmeier RA (2003) Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 121(4):547–57

    Article  PubMed  Google Scholar 

  134. Wenzel A, et al. (2005) Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Retin Eye Res 24(2):275–306

    Article  PubMed  CAS  Google Scholar 

  135. Wheatley CM, et al. (2002) Retinopathy of prematurity: recent advances in our understanding. Br J Ophthalmol 86(6):696–700

    Article  PubMed  CAS  Google Scholar 

  136. Yahata Y, et al. (2003) Nuclear translocation of phosphorylated STAT3 is essential for vascular endothelial growth factor-induced human dermal microvascular endothelial cell migration and tube formation. J Biol Chem 278(41):40026–31

    Article  PubMed  CAS  Google Scholar 

  137. Yamanouchi I, Igarashi I (1991) Arterial catheters, endothelin, and ROP. Pediatrics 88(4):874–5

    PubMed  CAS  Google Scholar 

  138. Yokoi M, et al. (2005) Elevations of AGE and vascular endothelial growth factor with decreased total antioxidant status in the vitreous fluid of diabetic patients with retinopathy. Br J Ophthalmol 89(6):673–5

    Article  PubMed  CAS  Google Scholar 

  139. Yokota T, et al. (2003) Role of protein kinase C on the expression of platelet-derived growth factor and endothelin-1 in the retina of diabetic rats and cultured retinal capillary pericytes. Diabetes 52(3):838–45

    Article  PubMed  CAS  Google Scholar 

  140. Yu AY, et al. (1998) Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am J Physiol 275(4):L818–26

    PubMed  CAS  Google Scholar 

  141. Yu DY, et al. (2000) Intraretinal oxygen levels before and after photoreceptor loss in the RCS rat. Invest Ophthalmol Vis Sci 41(12):3999–4006

    PubMed  CAS  Google Scholar 

  142. Zeiss CJ, Neal J, Johnson EA (2004) Caspase-3 in postnatal retinal development and degeneration. Invest Ophthalmol Vis Sci 45(3):964–70

    Article  PubMed  Google Scholar 

  143. Zelzer E, et al. (1998) Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1alpha/ARNT. EMBO J 17(17):5085–94

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Poulaki, V. (2007). Hypoxia in the Pathogenesis of Retinal Disease. In: Joussen, A.M., Gardner, T.W., Kirchhof, B., Ryan, S.J. (eds) Retinal Vascular Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29542-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-29542-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29541-9

  • Online ISBN: 978-3-540-29542-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics