Skip to main content

Musculoskeletal System

  • Chapter
Magnetic Resonance Tomography

Abstract

Together with the examination of the brain and imaging of the spinal canal, MR imaging of the musculoskeletal system has been established as a clinically valuable indication for MRI for several decades. There is broad agreement concerning indications, clinical value, and examination technique. Usually MRI is applied in cases in which no definite clarification is achieved by conventional diagnostic procedures. However, more and more clinical settings are arising in which MRI is included early in the diagnostic process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dawson KL, Moore SG, Rowland JM (1992) Age-related marrow changes in the pelvis: MR and anatomic findings. Radiology 183:47–51

    PubMed  CAS  Google Scholar 

  • Lang P, Fritz R. Vahlensieck M et al (1992) Residuales und rekonvertiertes haematopeotisches Knockenmark im distalen Femure-Spinecho und gegenphasierte Gradientenecho-MRT. RoFo 156:89–95

    PubMed  CAS  Google Scholar 

  • Semmler W, Gademann G, Bachert-BaumannP et al (1988) Monitoring of human tumor response to therapy by means of 31P-MR-spectroscopy. Radiology 166:533–539

    PubMed  CAS  Google Scholar 

  • Vahlensieck M, Seelos K, Traeber F et al (1993) Magnetresonanztomogographie mit schneller STIR-Technik: Optimierung und Vergleich mit anderen Sequenzen an einem 0.5 T: Einfluss von Echodistanz und Echozahl auf den Bildkontrast. RoFo 158:260–264

    PubMed  CAS  Google Scholar 

  • Vahlensieck M, Dombrowski R, Leutner C et al (1994) Magnetization transfer contrast (MTC) and MTC-subtraction enhances cartilage lesions and intrasubstance degeneration in vitro. Skelet Radiol 23:535–539

    CAS  Google Scholar 

  • Vogler JB, Murphy WA (1988) Bone marrow imaging. Radiology 168:679–693

    PubMed  Google Scholar 

  • Baur-Melnyk A, Buhmann S, Durr HR, Reiser M (2005) Role of MRI for the diagnosis and prognosis of multiple myeloma. Eur J Radiol 55:56–63

    PubMed  Google Scholar 

  • Cova MA, Dalla Palma L, Pozzi-Mucelli RS, Ricci C (1993) MRI of spondylodiskitis: contribution of gadolinium-DTPA and fat suppression sequence. Eur Radiol 3:541–547

    Google Scholar 

  • Frat A, Agildere M, Gencoglu A, Cakir B, Akin O, Akcali Z, Aktas A (2006) Value of whole-body turbo short tau inversion recovery magnetic resonance imaging with panoramic table for detecting bone metastases: comparison with 99MTc-methylene diphosphonate scintigraphy. J Comput Assist Tomogr 30:151–156

    PubMed  Google Scholar 

  • Ghanem N, Altehoefer C, Kelly T, Lohrmann C, Winterer J, Schafer O, Bley TA, Moser E, Langer M (2006) Whole-body MRI in comparison to skeletal scintigraphy in detection of skeletal metastases in patients with solid tumors. In Vivo 20:173–182

    PubMed  CAS  Google Scholar 

  • Lang P, Fritz R. Vahlensieck M et al (1992) Residuales und rekonvertiertes haematopeotisches Knockenmark im distalen Femure-Spinecho und gegenphasierte Gradientenecho-MRT. RoFo 156:89–95

    PubMed  CAS  Google Scholar 

  • Maas M, Poll LW, Terk MR (2002) Imaging and quantifying skeletal involvement in Gaucher disease. Br J Radiol 75(Suppl 1):A13–A24

    PubMed  Google Scholar 

  • Patel A, Klassen C, Griffiths HJ (2006) The case: bone disease in sickle cell anemia. Orthopedics 29:470, 552–554

    PubMed  Google Scholar 

  • Ricci C, Cava M, Kang YS et al (1990) Normal age related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 177:83–88

    PubMed  CAS  Google Scholar 

  • Schmidt GP, Schönberg SO, Schmid R, Stahl R, Tiling R, Becker CR, Reiser MF, Baur-Melnyk A (2007) Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 17:939–949

    PubMed  Google Scholar 

  • Stäbler A, Baur A, Bartl R et al (1996) Contrast enhancement and quantitative signal analysis in MR imaging of multiple myeloma AJR 167:1029–1036

    Google Scholar 

  • Sugisawa N, Suzuki T, Hiroi N, Yamane T, Natori K, Kiguchi H, Kuraishi Y, Higa M (2006)Primary bone malignant lymphoma: radiographic and magnetic resonance images. Intern Med 45:665–666

    Google Scholar 

  • Rahmouni A, Chosidow O, Mathieu D et al (1994) MR imaging of acute infectious cellulitis. Radiology 192:493–496

    PubMed  CAS  Google Scholar 

  • Sugimoto H, Takeda A, Masuyama J, Furuse M (1996) Early-stage rheumatoid arthritis: diagnostic accuracy of MR imaging. Radiology 198:185–192

    PubMed  CAS  Google Scholar 

  • Bennett DL, Ohashi K, El-Khoury GY (2004) Spondyloarthropathies: ankylosing spondylitis and psoriatic arthritis. Radiol Clin North Am 42:121–134

    PubMed  Google Scholar 

  • Buhne KH, Bohndorf K (2004) Imaging of posttraumatic osteomyelitis. Semin Musculoskelet Radiol 8:199–204. Review

    Google Scholar 

  • Chatha DS, Cunningham PM, Schweitzer ME (2005) MR imaging of the diabetic foot: diagnostic challenges. Radiol Clin North Am 43:747–759, ix. Review

    PubMed  Google Scholar 

  • Collins MS, Schaar MM, Wenger DE, Mandrekar JN (2005) T 1-weighted MRI characteristics of pedal osteomyelitis. AJR Am J Roentgenol 185:386–393

    PubMed  Google Scholar 

  • Hermann KG, Bollow M (2004) Magnetic resonance imaging of the axial skeleton in rheumatoid disease. Best Pract Res Clin Rheumatol 18:881–907. Review

    Google Scholar 

  • Jevtic V (2004) Vertebral infection. Eur Radiol 14(Suppl 3):E43–52. Review

    Google Scholar 

  • Jurik AG (2004) Chronic recurrent multifocal osteomyelitis. Semin Musculoskelet Radiol 8:243–253. Review

    Google Scholar 

  • Ledermann HP, Schweitzer ME, Morrison WB, Carrino JA (2003) MR imaging findings in spinal infections: rules or myths? Radiology 228:506–514

    PubMed  Google Scholar 

  • Levine DS, Forbat SM, Saifuddin A (2004) MRI of the axial skeletal manifestations of ankylosing spondylitis. Clin Radiol 59:400–413. Review

    Google Scholar 

  • Puhakka KB, Jurik AG, Schiottz-Christensen B, Hansen GV, Egund N, Christiansen JV, Stengaard-Pedersen K (2004 Magnetic resonance imaging of sacroiliitis in early seronegative spondylarthropathy. Abnormalities correlated to clinical and laboratory findings. Rheumatology (Oxford) 43:234–237

    Google Scholar 

  • Santiago Restrepo C, Gimenez CR, McCarthy K (2003) Imaging of osteomyelitis and musculoskeletal soft tissue infections: current concepts. Rheum Dis Clin North Am 29:89–109. Review

    Google Scholar 

  • Shih HN, Shih LY, Wong YC (2005) Diagnosis and treatment of subacute osteomyelitis. J Trauma 58:83–87

    PubMed  Google Scholar 

  • Tali ET (2004) Spinal infections. Eur J Radiol 50:120–33. Review

    Google Scholar 

  • Beltran J, Noto AM, Mosure JC, Weiss KL, Zuelzer W, Christoforidis AJ (1986) The knee: surface coil MR imaging at 1.5 T. Radiology 159:747–751

    PubMed  CAS  Google Scholar 

  • Beltran J, Knight CT, Zuelzer WA et al (1990) Core decompression for avascular necrosis of the femoral head: correlation between long-term results and preoperative MR staging. Radiology 175:533–539

    PubMed  CAS  Google Scholar 

  • Berg BE van de, Malghelm J, La Baisse MA et al (1992) Avascular necrosis of the hip: comparison of contrast-enhanced and non-enhanced MR imaging with histologic correlation. Radiology 182:445–450

    Google Scholar 

  • Berg BE van de, Malghelm J, La Baisse MA et al (1993) MR imaging of avascular necrosis and transient marrow edema of the femoral head. Radiographics 13:501–520

    Google Scholar 

  • Bjorkengren AG, Alrowaih A, Lindstrand A, Wing-strand H, Thorngren KG, Pettersson H (1990) Spontaneous osteonecrosis of the knee: value of MR imaging in determining prognosis. AJR 154:331–336

    PubMed  CAS  Google Scholar 

  • Bloem JL (1988) Transient osteoporosis of the hip: MR imaging. Radiology 167:753–755

    PubMed  CAS  Google Scholar 

  • De Smet AA, Tuite MJ, Norris MA, Swan JS (1994) MR diagnosis of meniscal tears: analysis of causes of errors. AJR 163:1419–1423

    PubMed  Google Scholar 

  • Dillon EH, Pope EF, Jokl P, Lynch K (1990) The clinical significance of stage 2 meniscal abnormal­ities on Magnetic Resonance knee images. Magn Reson Imaging 8:411–415

    PubMed  CAS  Google Scholar 

  • Ficat RP, Ariel J (1968) Diagnostic de 1‘osteonecrose femorocapitale primitive au stade I. Rev Chir Orthop 54:637

    PubMed  Google Scholar 

  • Hayes CS, Conway WF, Daniel WW (1993) MR imaging of bone marrow edema pattern: transient osteoporosis, transient bone marrow edema syn­drome, or osteonecrosis. Radiographics 13:1001–1011

    PubMed  CAS  Google Scholar 

  • Heuck A, Lehner K, Schittich I, Reiser M (1988) Die Wertigkeit der MR fur Diagnostik, Differenzial-diagnostik und Therapiekontrolle des Morbus Perthes. RoFo 148:189–194

    PubMed  CAS  Google Scholar 

  • Imhof H, Breitenseher M, Trattnig S, Kramer J, Hofmann S, Plenk H, Schneider W, Engel A (1997) Imaging of avascular necrosis of bone. Eur Radiol 7:180–186

    PubMed  CAS  Google Scholar 

  • Jamamillo D, Kasser JR, Villegas-Medina OL, Garry E (1995) Cartilaginous abnormalities and growth disturbance in Legg-Calve-Perthes disease: evalua­tion with MR imaging. Radiology 187:767

    Google Scholar 

  • Jergesen HE, Heller M, Genant HK (1985) Magnetic resonance imaging of the femoral head. Orthop Clin North Am 16:705–716

    PubMed  CAS  Google Scholar 

  • Mitchell DG, Kundel HL, Steinberg ME (1986) Avascular necrosis of the hip: comparison of MR, CTand scintigraphy. AJR 147:67–71

    PubMed  CAS  Google Scholar 

  • Mitchell DG, Rao VM, Dalinka MK, Spritzer CE, Alavi A, Steinberg ME, Fallon M, Kressel HY (1987) Femoral head avascular necrosis: correlation of MR imaging, radiographic staging, radionuclide imaging, and clinical findings. Radiology 162:709–715

    PubMed  CAS  Google Scholar 

  • Neuhold A, Hofmann S, Engel A (1993) Knochen-markodem-Fruhform der Hiiftkopfnekrose. RoFo 159:120–125

    PubMed  CAS  Google Scholar 

  • Neuhold A, Hofmann S, Engel A et al. (1992) Bone marrow edema of the hip: MR findings after core decompression. J Comp Assist Tomogr 16:951–955

    CAS  Google Scholar 

  • Rush BH, Bramson RT, Odgen JA (1988) Legg-Calve-Perthes disease: detection of cartilaginous and synovial changes with MR imaging. Radiol­ogy 167:473

    CAS  Google Scholar 

  • Sokoloff RM, Farooki S, Resnick D. Spontaneous osteonecrosis of the knee associated with ipsilateral tibial plateau stress fracture: report of two patients and review of the literature. Skeletal Radiol 30:53–56

    Google Scholar 

  • Trumble TE, Irving J (1990) Histologic and mag­netic resonance imaging correlations in Kienbock’s disease. J Hand Surg 15:879–884

    CAS  Google Scholar 

  • Watson RM, Roach NA, Dalinka MK (2004) Avascular necrosis and bone marrow edema syndrome. Radiol Clin North Am 42:207–219

    PubMed  Google Scholar 

  • Yamamoto T, Bullough PG (2000a) Subchondral insufficiency fracture of the femoral head and medial femoral condyle. Skeletal Radiol 29:40–44

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Bullough PG (2000b) Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg 82:858–866

    PubMed  CAS  Google Scholar 

  • Yao L, Stanczak J, Boutin RD (2004) Presumptive subarticular stress reactions of the knee: MRI detection and association with meniscal tear patterns. Skeletal Radiol 33:260–264

    PubMed  Google Scholar 

  • Zanetti M, Romero J, Dambacher MA, Hodler J (2003) Osteonecrosis diagnosed on MR images of the knee. Relationship to reduced bone mineral density determined by high resolution peripheral quantitative CT. Acta Radiol 44:525–531

    PubMed  CAS  Google Scholar 

  • Beltran J, Knight CT, Zuelzer WA et al (1990) Core decompression for avascular necrosis of the femoral head: correlation between long-term results and preoperative MR staging. Radiology 175:533–539

    PubMed  CAS  Google Scholar 

  • Boeree NR, Watkinson AF, Ackroyd CE, Johnson C (1991) Magnetic resonance imaging of meniscal and cruciate injuries of the knee. J Bone Joint Surg Br 73:452–457

    PubMed  CAS  Google Scholar 

  • Broderick LS, Turner LA, Renfrew D, Schnitzer TJ, Huff JP, Harris C (1994) Severity of articular cartilage abnormality in patients with osteoarthritis: evaluation with fast spin-echo MR vs arthroscopy. Am J Roentgenol 162:99–103

    CAS  Google Scholar 

  • Chan WP, Peterfy C, Fritz RC, Genant HK (1994) MR diagnosis of complete tears of the anterior cruciate ligament of the knee: importance of anterior subluxation of the tibia. AJR 162:355–360

    PubMed  CAS  Google Scholar 

  • De Smet AA, Tuite MJ, Norris MA, Swan JS (1994) MR diagnosis of meniscal tears: analysis of causes of errors. AJR Am J Roentgenol 163:1419–1423

    PubMed  Google Scholar 

  • De Smet AA, Tuite MJ (2006) Use of the “two-slice-touch” rule for the MRI diagnosis of meniscal tears. AJR Am J Roentgenol 187:911–914

    PubMed  Google Scholar 

  • Dillon EH, Pope EF, Jokl P, Lynch K (1990) The clinical significance of stage 2 meniscal abnormalities on Magnetic Resonance knee images. Magn Reson Imaging 8:411–415

    PubMed  CAS  Google Scholar 

  • Disler DG, McCauley TR, Wirth CR, Fuchs MD (1995) Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gra­dient-echo MR Imaging: Comparison with standard MR Imaging and correlation with arthroscopy. Am J Roentgenol 165:377–382

    CAS  Google Scholar 

  • Eckstein F, Glaser C (2004) Measuring cartilage morphology with quantitative magnetic resonance imaging. Semin Musculoskelet Radiol 8:329–353. Review

    Google Scholar 

  • Elias DA, White LM, Fithian DC (2002) Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology 225:736–743

    PubMed  Google Scholar 

  • Ficat RP, Philippe J, Hungerford DS (1979) Chon-dromalacia patellae: a system of classification. Clin Orthop 144:55–62

    PubMed  Google Scholar 

  • Fisher SP, Rox JM, Del Pizzo W, Friedman MJ, Snyder SJ, Ferkel RD (1991) Accuracy of diagnoses from magnetic resonance imaging of the knee: a multicenter analysis of one thousand and fourteen patients. J Bone Joint Surg Am 73:2–10

    Google Scholar 

  • Fowler PJ, Miniasci A, Amendola A (1995) Anterior cruciate ligament tear: prospective evaluation of diagnostic accuracy of middle- and high-field strength MR imaging at 1.5 and 0.5 T. Radiology 197:826–830

    PubMed  Google Scholar 

  • Glaser C (2005) New techniques for cartilage imaging: T 2 relaxation time and diffusion-weighted MR imaging. Radiol Clin North Am 43:641–653, vii. Review

    PubMed  Google Scholar 

  • Goodwin DW (2001) Visualization of the macroscopic structure of hyaline cartilage with MR imaging. Semin Musculoskelet Radiol 5:305–312. Review

    Google Scholar 

  • Gray ML, Burstein D, Xia Y (2001) Biochemical (and functional) imaging of articular cartilage. Semin Musculoskelet Radiol 5:329–343. Review

    Google Scholar 

  • Grover JS, Bassett LW, Gross ML, Seeger LL, Finer-man GAM (1990) Posterior cruciate ligament: MR imaging. Radiology 174:527–530

    PubMed  CAS  Google Scholar 

  • Hayes CW, Brigido MK, Jamadar DA, Propeck (2000) Mechanism-based pattern approach to classification of complex injuries of the knee depicted at MR imaging. Radiographics 20(Spec. no.):S121–S134

    PubMed  Google Scholar 

  • Jergesen HE, Heller M, Genant HK (1985) Magnetic resonance imaging of the femoral head. Orthop Clin North Am 16:705–716

    PubMed  CAS  Google Scholar 

  • Justice WW, Quinn SF (1995) Error patterns in the MR imaging evaluation of menisci of the knee. Radiology 196:617–621

    PubMed  CAS  Google Scholar 

  • Khan KM, Bonar F, Desmond PM, Cook JL, Young DA, Visentini PJ, Fehrmann MW, Kiss ZS, O’Brien PA, Harcourt PR, Dowling RJ, O’Sullivan RM, Crichton KJ, Tress M, Wark JD (1996) Patellar tendinosis (jumper’s knee): findings at histopathologic examination, US, and MR imaging. Victorian Institute of Sport Tendon Study Group. Radiology 200:821–827

    PubMed  CAS  Google Scholar 

  • Link T, Majumdar S, Peterfy CG, Daldrup HE, Uffmann M, Dowling C, Steinbach L, Genant HK (1998) High resolution MRI of small joints: impact of spatial resolution on diagnostic performance and SNR. Magn Reson Imaging 16:147–155

    PubMed  CAS  Google Scholar 

  • McCauley TR (2002) MR imaging of chondral and osteochondral injuries of the knee. Radiol Clin North Am 40:1095–1107. Review

    Google Scholar 

  • McCauley TR (2004) MR imaging evaluation of the postoperative knee. Radiology 234:53–61. Review

    Google Scholar 

  • McCauley T, Kier R, Lynch KR, Jokl P (1992) Chon-dromalacia patellae: diagnosis with MR imaging. Am J Roentgenol 158:101–105

    CAS  Google Scholar 

  • Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T 2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368. Review

    Google Scholar 

  • Mlynarik V, Trattnig S, Huber M, Zembsch A, Imhof H (1999) The role of relaxation times in monitoring proteoglycan depletion in articular cartilage. JMRI 10:497–502

    PubMed  CAS  Google Scholar 

  • Peterfy CG, Majumdar S, Lang P, van Dijke CF, Sack K, Genant HK (1994) MR imaging of the arthritic knee: improved discrimination of cartilage, synovium, and effusion with pulsed saturation transfer and fat-suppressed T 1-weighted sequences. Radiology 191:413–419

    PubMed  CAS  Google Scholar 

  • Recht MP, Piraino DW, Applegate G, Richmond BJ, Yu J, Parker RD, Andrish JT (1996) Complications after anterior cruciate ligament reconstruction: radiographic and MR findings. AJR 167:705–710

    PubMed  CAS  Google Scholar 

  • Reicher MA, Hartzmann S, Duckwiler GR, Basset LW, Anderson LJ, Gold RH (1986) Meniscal injuries: detection using MR imaging. Radiology 159:753–757

    PubMed  CAS  Google Scholar 

  • Schweitzer ME, Tran D, Deely DM, Hume EL (1995) Medial collateral ligament injuries: evaluation of multiple signs, prevalence and location of associated bone bruises, and assessment with MR imaging. Radiology 194:825–829

    PubMed  CAS  Google Scholar 

  • Shahriaree H (1985) Chondromalacia. Contemp Orthop 11:27–32

    Google Scholar 

  • Smith D, Totty WG (1990) The knee after partial meniscectomy: MR imaging features. Radiology 176:141–144

    PubMed  CAS  Google Scholar 

  • Sonin AH, Fitzgerald SW, Bresler ME, Kirsch MD, Hoff FL, Friedman H (1995) MR imaging appearance of the extensor mechanism of the knee: functional anatomy and injury patterns. Radiographics 15:367–82

    PubMed  CAS  Google Scholar 

  • Stoller DW, Martin C, Crues JV, Kaplan L, Mink JH (1987) Meniscal tears: pathologic correlation with MR imaging. Radiology 163:731–735

    PubMed  CAS  Google Scholar 

  • Tervonen O, Dietz MJ, Carmichael SW (1993) MR imaging of knee hyaline cartilage: evaluation of two- and three-dimensional sequences. J Magn Reson Imaging 3:663–668

    PubMed  CAS  Google Scholar 

  • Umans H, Wimpfheimer O, Haramati N, Applbaum YH, Adler M, Bosco J (1995) Diagnosis of partial tears of the anterior cruciate ligament of the knee: value of MR imaging. AJR 165:893–897

    PubMed  CAS  Google Scholar 

  • Vahey TN, Broome DR, Kayes KJ, Shelbourne KD (1991) Acute and chronic tears of the anterior cruciate ligament. Differential features at MR imaging. Radiology 181:251–253

    PubMed  CAS  Google Scholar 

  • Vahlensieck M, Dombrowski R, Leutner C, Wagner U, Reiser M (1994) Magnetization transfer contrast (MTC) and MTC-subtraction enhances cartilage lesions and intrasubstance degeneration in vitro. Skelet Radiol 23:535–539

    CAS  Google Scholar 

  • Vellet AD, Le DH, Munk PL et al (1995) Anterior cruciate ligament tear: prospective evaluation of diagnostic accuracy of middle- and high-field strength MR imaging at 1.5 and 0.5 T. Radiology 197:826–830

    PubMed  CAS  Google Scholar 

  • Watanabe AT, Carter BC, Teitelbaum GP, Bradley WG (1989) Common pitfalls in Magnetic Resonance imaging of the knee. J Bone Joint Surg Am 71:857–862

    PubMed  CAS  Google Scholar 

  • Weiss KL, Morehouse HT, Levy IM (1991) Sagittal MR images of the knee: a low signal band parallel

    Google Scholar 

  • Bencardino JT, Beltran J (2006) MR imaging of the glenohumeral ligaments. Radiol Clin North Am 44:489–502, vii. Review

    PubMed  Google Scholar 

  • Bigoni BJ, Chung CB (2006) MR imaging of the rotator cuff interval. Radiol Clin North Am 44:525–536, viii. Review

    PubMed  Google Scholar 

  • Farley TE, Neumann CH, Steinbach LS (1992) Full-thickness tear of the rotator cuff of the shoulder: diagnosis with MR imaging. AJR 158:347–351

    PubMed  CAS  Google Scholar 

  • Flannigan B, Kursunoglu-Brahme S, Snyder S, Kar-zel R, Del Pizzo W, Resnick D (1990) MR-arthrography of the shoulder. AJR 155:829–832

    PubMed  CAS  Google Scholar 

  • Gagey N, Ravaud E, Lassau JP (1993) Anatomy of the acromial arch: correlation of anatomy and Magnetic Resonance imaging. Surg Radiol Anat 15:63–70

    PubMed  CAS  Google Scholar 

  • Jbara M, Chen Q, Marten P, Morcos M, Beltran J. Shoulder MR arthrography: how, why, when. Radiol Clin North Am 43:683–692, viii. Review

    Google Scholar 

  • Morag Y, Jacobson JA, Miller B, De Maeseneer M, Girish G, Jamadar D. MR imaging of rotator cuff injury: what the clinician needs to know. Radiographics :1045–1065. Review

    Google Scholar 

  • Morrison DS, Bigliani LU (1987) The clinical significance of variations in acromial morphology. Orthop Trans 11:234–244

    Google Scholar 

  • Neer CS (1972) Anterior acromioplasty for the chronic impingement syndrome in the shoulder. J Bone Joint Surg Am 54:41

    PubMed  Google Scholar 

  • Neer CS (1982) Impingement lesions. Clin Orthop 173:70–77

    Google Scholar 

  • Palmer WE, Brown JH, Rosenthal DI (1993) Rotator cuff: evaluation with fat-suppressed MR arthrography. Radiology 188:683–687

    PubMed  CAS  Google Scholar 

  • Palmer WE, Brown JH, Rosenthal DI (1994) Labral-ligamentous complex of the shoulder: evaluation with MR-arthrography. Radiology 190:645–651

    PubMed  CAS  Google Scholar 

  • Rafii M, Firooznia H, Sherman O et al (1990) Rotator cuff lesions: signal patterns at MR imaging. Radiology 177:817–823

    PubMed  CAS  Google Scholar 

  • Reimus WR, Shady KL, Mirowitz SA, Totty WG (1995) MR diagnosis of rotator cuff tears of the shoulder: value of using T2-weighted fat-saturated images. AJR 164:1451–1455

    Google Scholar 

  • Reiser M, Kahn T, Rupp N, Allgayer B (1986) Er-gebnisse der MR-Tomographie in der Diagnostik der Osteomyelitis und Arthritis. RoFo 145/6:661–666

    Google Scholar 

  • Seeger LL, Gold RH, Bassett LW, Ellmann H (1988) Shoulder impingement syndrome: MR findings in 53 shoulders. AJR 150:343–347

    PubMed  CAS  Google Scholar 

  • Singson RD, Hoang T, Dan S, Friedman M (1995) MR evaluation of rotator cuff pathology using T2-weighted fast spin-echo technique with and without fat suppression. AJR 166:1061–1065

    Google Scholar 

  • Sonin AH, Peduto AJ, Fitzgerald CM, Callahan CM, Bresler ME (1996) MR imaging of the rotator cuff mechanism: comparison of spin-echo and turbo spin-echo sequences. AJR 167:333–338

    PubMed  CAS  Google Scholar 

  • Tirman PFJ, Stauffer AE, Crues JV et al. (1993) Saline magnetic resonance arthrography in the evaluation of glenohumeral instability. Arthroscopy 9:550–559

    PubMed  CAS  Google Scholar 

  • Tirman PFJ, Bost FW, Steinbach LS et al. (1994) MR arthrographic depiction of tear/ of the rotator cuff: benefit of abduction and external rotation of the arm. Radiology 192:851–856

    PubMed  CAS  Google Scholar 

  • Vahlensieck M, Majumdar S, Lang P, Genant HK (1992) Shoulder MRI: routine examinations using gradient recalled and fat-saturated sequences. Eur J Radiol 2142–147

    Google Scholar 

  • Cerezal L, Abascal F, Garcia-Valtuille R, Del Pinal F (2005) Wrist MR arthrography: how, why, when. Radiol Clin North Am 43:709–731, viii. Review

    PubMed  Google Scholar 

  • Miller RJ (2001) Wrist MRI and carpal instability: what the surgeon needs to know, and the case for dynamic imaging. Semin Musculoskelet Radiol 5:235–240. Review

    Google Scholar 

  • Palmer AK (1989) Triangular fibrocartilage complex lesions: a classification. J Hand Surg 14:594

    CAS  Google Scholar 

  • Romiger MB, Bernreater WK, Kenney PJ, Lee DH (1993) MR imaging of anatomy and tears of wrist ligaments. Radiographics 13:1233–1246

    Google Scholar 

  • Schmitt R, Christopoulos G, Meier R, Coblenz G, Frohner S, Lanz U, Krimmer H (2003) [Direct MR arthrography of the wrist in comparison with arthroscopy: a prospective study on 125 patients.] RoFo 175:911–919

    Google Scholar 

  • Smitz DK, Snearly WN (1994) Lunotriquetral in-terosseous ligaments of the wrist: MR appearances in asymptomatic volunteers and wrists. Radiology 191:199–202

    Google Scholar 

  • Totterman SMS, Miller RJ (1995) Triangular fibro-cartilage complex: normal appearance on coronal three-dimensional gradient-recalled-echo MR images. Radiology 195:521–527

    PubMed  CAS  Google Scholar 

  • Zanetti M, Linkous MD, Gilula LA, Hodler J (2000) Characteristics of triangular fibrocartilage defects in symptomatic and contralateral asymptomatic wrists. Radiology 216:840–845

    PubMed  CAS  Google Scholar 

  • Zlatkin MB, Rosner J (2006) MR imaging of ligaments and triangular fibrocartilage complex of the wrist. Radiol Clin North Am 44:595–623, ix. Review

    PubMed  Google Scholar 

  • Brown KW, Morrison WB, Schweitzer ME, Parellada JA, Nothnagel H (2004) MRI findings associated with distal tibiofibular syndesmosis injury. AJR Am J Roentgenol 182:131–136

    PubMed  Google Scholar 

  • Cerezal L, Abascal F, Garcia-Valtuille R, Del Pinal F (2005) Wrist MR arthrography: how, why, when. Radiol Clin North Am 43:709–731, viii. Review

    PubMed  Google Scholar 

  • Erickson SJ, Quinn SR, Kneeland JB et al (1990) MR imaging of the tarsal tunnel and related spaces: normal and abnormal findings with anatomic correlation. AJR 155:323–328

    PubMed  CAS  Google Scholar 

  • Klein MA, Spreitzer AM (1993) MR imaging of the tarsal sinus and canal: normal anatomy, pathologic findings, and features of the sinus tarsi syndrome. Radiology 186:233–240

    PubMed  CAS  Google Scholar 

  • Lektrakul N, Chung CB, Lai Ym , Theodorou DJ, Yu J, Haghighi P, Trudell D, Resnick D (2001) Tarsal sinus: arthrographic, MR imaging, MR arthrographic, and pathologic findings in cadavers and retrospective study data in patients with sinus tarsi syndrome. Radiology 219:802–810

    PubMed  CAS  Google Scholar 

  • Marcus DS, Reicher MA, Kellerhouse LE (1989) Achilles tendon injuries: the role of MR imaging. J Comput Assist Tomogr 13:480–486

    PubMed  CAS  Google Scholar 

  • Morrison DS, Greenbaum BS, Einhorn A (2000) Shoulder impingement. Orthop Clin North Am 31:285–293

    PubMed  CAS  Google Scholar 

  • Rosenberg ZS, Beltran J, Bencardino JT (2000) From the RSNA Refresher Courses. Radiological Society of North America. MR imaging of the ankle and foot. Radiographics 20(Spec no.):S153–S179

    PubMed  Google Scholar 

  • Schneck CD, Mesgarzadeh M, Bonakdarpour A, Ross GJ (1992) MR imaging of the most commonly injured ankle ligaments. Radiology 184:499–512

    PubMed  CAS  Google Scholar 

  • Steinborn M, Heuck A, Maier M, Schnarkowski P, Scheid­ler J, Reiser M (1999) [MRI of plantar fasciitis.] RoFo 170:41–46

    Google Scholar 

  • Weishaupt D, Treiber K, Kundert HP, Zollinger H, Vienne P, Hodler J, Willmann JK, Marincek B, Zanetti M (2003) Morton neuroma: MR imaging in prone, supine, and upright weight-bearing body positions. Radiology 226:849–56

    PubMed  Google Scholar 

  • Zanetti M, Strehle JK, Kundert HP, Zollinger H, Hodler J (1989) Morton neuroma: effect of MR imaging findings on diagnostic thinking and therapeutic decisions. Radiology 212: 583–588

    Google Scholar 

  • Zanetti M, Linkous MD, Gilula LA, Hodler J (2000) Characteristics of triangular fibrocartilage defects in symptomatic and contralateral asymptomatic wrists. Radiology 216:840–845

    PubMed  CAS  Google Scholar 

  • Coel M, Yamada CY, Ko J (1993) MR imaging of patients with lateral epicondylitis of the elbow (tennis elbow): importance of increased signal of the anconeus muscle. AJR 161:1019

    PubMed  CAS  Google Scholar 

  • Fowler KA, Chung CB (2006) Normal MR imaging anatomy of the elbow. Radiol Clin North Am :553–567, viii. Review

    Google Scholar 

  • Steinbach LS, Palmer WE, Schweitzer ME (2002) Special focus session. MR arthrography. Radiographics 22:1223–1246

    PubMed  Google Scholar 

  • Steinbach LS, Palmer WE, Schweitzer ME (2002) Special focus session. MR arthrography. Radiographics 22:1223–1246 Review

    Google Scholar 

  • Waldt S, Bruegel M, Ganter K, Kuhn V, Link TM, Rummeny EJ, Woertler K (2005) Comparison of multislice CT arthrography and MR arthrography for the detection of articular cartilage lesions of the elbow. Eur Radiol 15:784–791

    PubMed  CAS  Google Scholar 

  • Bancroft LW, Peterson JJ, Kransdorf MJ (2005) MR imaging of tumors and tumor-like lesions of the hip. Magn Reson Imaging Clin N Am 13:757–774

    PubMed  Google Scholar 

  • Doi H, Ono A, Kawai A, Morimoto Y, Kunisada T, Nakata E, Ozaki T (2006) Magnetic resonance angiography without contrast enhancement medium in bone and soft tissue tumors. Oncol Rep 15:681–685

    PubMed  Google Scholar 

  • Erlemann R (2006) Imaging and differential diagnosis of primary bone tumors and tumor-like lesions of the spine. Eur J Radiol 58:48–67

    PubMed  CAS  Google Scholar 

  • Feydy A, Anract P, Tomeno B, Chevrot A, Drape JL (2006) Assessment of vascular invasion by musculoskeletal tumors of the limbs: use of contrast-enhanced MR angiography. Radiology 238:611–621

    PubMed  Google Scholar 

  • Fuchs B, Spinner RJ, Rock MG (2005) Malignant peripheral nerve sheath tumors: an update. J Surg Orthop Adv 14:168–174

    PubMed  Google Scholar 

  • Gehanne C, Delpierre I, Damry N, Devroede B, Brihaye P, Christophe C (2005) Skull base chordoma: CT and MRI features. JBR-BTR 88:325–327

    PubMed  CAS  Google Scholar 

  • Hanna SL, Fletcher BD (1995) MR imaging of malignant soft-tissue tumors.Magn Reson Imaging Clin N Am 3:629–650

    Google Scholar 

  • Hernandez JA, Camacho A, Palacio D, Swischuk LE (2005) Low-grade (often multifocal) osteomyelitis (a diagnostic problem and/or a mimicker of tumor).Emerg Radiol 11:322–327

    Google Scholar 

  • Hudson TM, Hamlin DJ, Enneking WF, Pettersson H (1985) Magnetic resonance imaging of bone and soft tissue tumors: early experience in 31 patients compared with computed tomography. Skeletal Radiol 13:134–146

    PubMed  CAS  Google Scholar 

  • Keenan S, Bui-Mansfield LT (2006) Musculoskeletal lesions with fluid-fluid level: a pictorial essay. J Comput Assist Tomogr 30:517–524

    PubMed  Google Scholar 

  • Kransdorf MJ, Murphey MD (2006) Soft tissue tumors: post-treatment imaging. Radiol Clin North Am 44:463–472

    PubMed  Google Scholar 

  • Leichtle C, Leichtle U, Rudert M (2005) Juvenile bone cyst, osteochondroma and non-ossifying fibroma in a male patient. A case report with description of entities [in German]. RoFo 177:1580–1582

    PubMed  CAS  Google Scholar 

  • Meissner SA, Vieth V, August C, Winkelmann W (2006) Radiology-pathology conference: osteosarcoma in a cartilaginous exostosis of the femur. Clin Imaging 30:206–209

    PubMed  Google Scholar 

  • Murphey MD, Choi JJ, Kransdorf MJ, Flemming DJ, Gannon FH (2000) Imaging of osteochondroma: variants and complications with radiologic-pathologic correlation. Radiographics 20:1407–1434

    PubMed  CAS  Google Scholar 

  • Oudenhoven LF, Dhondt E, Kahn S, Nieborg A, Kroon HM, Hogendoorn PC, Gielen JL,Bloem JL, De Schepper A (2006) Accuracy of radiography in grading and tissue-specific diagnosis—a study of 200 consecutive bone tumors of the hand. Skeletal Radiol 35:78–87

    PubMed  CAS  Google Scholar 

  • Resnick D, Kyriakos M, Greenway GD (2005) Tumors and tumor-like lesions of bone: imaging and pathology of specific lesions. In: Resnick D, Kransdorf MJ (ed) Bone and joint imaging, 3rd edn. Saunders, New York

    Google Scholar 

  • Turcotte RE (2006) Giant cell tumor of bone. Orthop Clin North Am 37:35–51

    PubMed  Google Scholar 

  • Vahlensieck M (2006) Synovial lesions around the knee joint [in German]. Radiologe 46:65–70

    PubMed  CAS  Google Scholar 

  • Weatherall PT (1995) Benign and malignant masses. MR imaging differentiation. Magn Reson Imaging Clin N Am 3:669–694

    PubMed  CAS  Google Scholar 

  • Weekes RG, Berquist TH, McLeod RA, Zimmer WD (1985) Magnetic resonance imaging of soft-tissue tumors: comparison with computed tomography. Magn Reson Imaging 3:345–352

    PubMed  CAS  Google Scholar 

  • Woertler K (2005) Soft tissue masses in the foot and ankle: characteristics on MR imaging. Semin Musculoskelet Radiol 9:227–242

    PubMed  Google Scholar 

  • Woude HJ van der, Verstraete KL, Hogendoorn PC, Taminiau AH, Hermans J, Bloem JL (1998) Musculoskeletal tumors: does fast dynamic contrast-enhanced subtraction MR imaging contribute to the characterization? Radiology 208:821–828

    PubMed  Google Scholar 

  • Blomlie V, Lien HH, Iversen T et al (1993) Radiation-induced insufficiency fractures of the sacrum: evaluation with MR imaging. Radiology 180:241–244

    Google Scholar 

  • Bogost GA, Lizerbram EK, Crues JV (1995) MR imaging in evaluation of suspected hip fracture: frequency of unsuspected bone and soft-tissue injury. Radiology 197:263–267

    PubMed  CAS  Google Scholar 

  • Fleckenstein JL, Weatherall PT, Parkey RW, Payne JA, Pshock RM (1989) Sports-related muscle injuries: evaluation with MR imaging. Radiology 172:793–798

    PubMed  CAS  Google Scholar 

  • Gregg A, Bogost MD, Lizerbram EK et al (1995) MR imaging in evaluation of suspected bone and soft-tissue injury. Radiology 197:263–267

    Google Scholar 

  • Haramati N, Staron RB, Barax C et al (1994) Magnetic resonance imaging of occult fractures of the proximal femur. Skelet Radiol 23:19–22

    CAS  Google Scholar 

  • Mink JH, Deutsch AL (1989) Occult cartilage and bone injuries of the knee: detection, classification and assessment with MR imaging. Radiology 170:823–829

    PubMed  CAS  Google Scholar 

  • Quinn SF, McCarthy JL (1993) Prospective evaluation of patients with suspected hip fracture and indeterminate radiographs: use of T1 weighted MR images. Radiology 156:77–82

    Google Scholar 

  • Vellet AD, Marks P, Fowler P, Munro PH (1991) Occult posttraumatic osteochondral lesions of the knee: prevalence, classification, and short-term sequelae evaluated with MR-imaging. Radiology 178:271–276

    PubMed  CAS  Google Scholar 

  • Virolainen H, Visur T, Kuusela T (1993) Acute dislocation of the patella: MR findings. Radiology 197:826–830

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glaser, C., Weckbach, S., Reiser, M. (2008). Musculoskeletal System. In: Reiser, M., Semmler, W., Hricak, H. (eds) Magnetic Resonance Tomography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29355-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-29355-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29354-5

  • Online ISBN: 978-3-540-29355-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics