Skip to main content

Thorax and Vasculature

  • Chapter
Magnetic Resonance Tomography

Abstract

While MRI is an imaging method of first choice in almost all parts of the human body its acceptance for thoracic imaging is rather low even today. One of the reasons is of course that CT has developed dramatically. Multidetector spiral technique (MDCT) allows for isotropic voxels and reconstruction in any user-defined section; the method is robust and fast. The major problem in imaging thoracic organs by MRI is the continuous motion of all components induced by heart pulsation and breathing. Both are most prominent in the lower and anterior sections of the chest. Technical challenges to overcome these effects are one major reason why MRI of the chest was for a long time limited to the posterior chest wall and the thoracic outlet. Both locations are relatively static and could be examined with classical T 1- and T 2-weighted spin-echo and fast spin-echo techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Section 5.1

  1. Ahlstrom KH, Johansson LO, Rodenburg JB, Ragnarson AS, Akeson P, Borseth A (1999) Pulmonary MR angiography with ultrasmall superparamagnetic iron oxide particles as a blood pool agent and a navigator echo for respiratory gating: pilot study. Radiology 211:865–869

    PubMed  CAS  Google Scholar 

  2. Aisner J (1995) Current approach to malignant mesothelioma of the pleura. Chest 107:332S–344S

    PubMed  CAS  Google Scholar 

  3. Albert MS, Cates GD, Driehuys B, Happer W, Saam B, Springer CS Jr, Wishnia A (1994) Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370:199–201

    PubMed  CAS  Google Scholar 

  4. Alsop DC, Hatabu H, Bonnet M et al. (1995) Multi-slice, breathhold imaging of the lung with submillisecond echo times. Magn Reson Med 33:678–682

    PubMed  CAS  Google Scholar 

  5. Altes TA, Powers PL, Knight-Scott J, Rakes G, Platts-Mills TA, de Lange EE, Alford BA, Mugler JP III, Brookeman JR (2001) Hyperpolarized 3He MR lung ventilation imaging in asthmatics: preliminary findings. J Magn Reson Imaging 13:378–384

    PubMed  CAS  Google Scholar 

  6. Bader TR, Semelka RC, Pedro MS, Armao DM, Brown MA, Molina PL (2002) Magnetic Resonance Imaging of pulmonary parenchymal disease using a modified breath-hold 3D gradient-echo technique: initial observations. J Magn Reson Imaging 15:31–38

    PubMed  Google Scholar 

  7. Belardinelli L, Gialdi G, Ceroni L et al. (1995) Comparison between computed tomography and magnetic resonance data and pahthologic findings in substernal goiters. Int Surg 80:65–69

    PubMed  CAS  Google Scholar 

  8. Biederer J, Busse I, Grimm J, Reuter M, Muhle C, Freitag S, Heller M (2002a) Sensitivity of MRI in detecting alveolar infiltrates: experimental studies. Fortschr Roentgenstr 174:1033–1039

    CAS  Google Scholar 

  9. Biederer J, Reuter M, Both M, Muhle C, Grimm J, Graessner J, Heller M (2002b) Analysis of artefacts and detail resolution of lung MRI with breath-hold T 1-weighted gradient-echo and T 2-weighted fast spin echo sequences with respiratory triggering. Eur Radiol 12:378–384

    PubMed  CAS  Google Scholar 

  10. Blum U, Windfuhr M, Buitrago-Tellez C, Sigmund G, Herbst EW, Langer M (1994) Invasive pulmonary aspergillosis. MRI, CT, and plain radiographic findings and their contribution for early diagnosis. Chest 106:1156–1161

    PubMed  CAS  Google Scholar 

  11. Böck JC, Pison U, Wlodarczyk et al. (1997) Kernspintomographische Quantifizierung des Lungenödemgrades mit Hilfe eines makromolekularen Kontastmittels. Fortschr Roentgenstr 167:509–515

    Google Scholar 

  12. Boiselle PM, Patz EF, Vining DJ et al. (1998) Imaging of mediastinal lymph nodes: CT, MR, and FDG PET. Radiographics 18:1061–1069

    PubMed  CAS  Google Scholar 

  13. Both M, Schultze J, Reuter M, Bewig B, Hubner R, Bobis I, Noth R, Heller M, Biederer J (2003) Fast T 1- and T 2-weighted pulmonary MR-imaging in patients with bronchial carcinoma. Eur J Radiol 53:478–488

    Google Scholar 

  14. Boxt LM (1996) MR imaging of pulmonary hypertension and right ventricular dysfunction. Magn Reson Imaging Clin N Am 4:307–325

    PubMed  CAS  Google Scholar 

  15. Butchart EG, Ashcroft T, Barnsley WC et al. (1976) Pleuropneumonectomy in the management of diffuse malignant mesothelioma of the pleura. Experience with 29 patients.Thorax 31:15–24

    CAS  Google Scholar 

  16. Caruthers SD, Paschal CB, Pou NA et al. (1998) Regional measurements of pulmonary edema by using magnetic resonance imaging. J Appl Physiol 98:7587–8750

    Google Scholar 

  17. Cluzel P, Similowski T, Chartrand-Lefebvre C, Zelter M, Derenne JP, Grenier PA (2000) Diaphragm and chest wall: assessment of the inspiratory pump with MR imaging-preliminary observations. Radiology 215:574–583

    PubMed  CAS  Google Scholar 

  18. De Geer G, Webb WR, Gamsu G (1986) Normal thymus: assessment with MR and CT. Radiology 158:313–317

    PubMed  Google Scholar 

  19. De Geer G, Webb WR, Sollitto R, Golden J (1986) MR characteristics of benign lymph node enlargement in sarcoidosis and Castleman’s disease. Eur J Radiol 6:145–148

    PubMed  Google Scholar 

  20. De Lange EE (2006) Science to practice: what is new about detecting emphysema? Radiology 239:619–620

    PubMed  Google Scholar 

  21. Di Cesare E, Cerone G, Enrici RM, Tombolini V, Anselmo P, Masciocchi C (2004) MRI characterization of residual mediastinal masses in Hodgkin’s diesease: long-term follow-up. Magn Reson Imaging 22:31–38

    PubMed  Google Scholar 

  22. Dietrich O, Losert C, Attenberger U, Fasol U, Peller M, Nikolaou K, Reiser MF, Schönberg SO (2005) Fast oxygen-enhanced multislice imaging of the lung using parallel aquisition techniques. Magn Reson Med 53:1317–1325

    PubMed  Google Scholar 

  23. Edelman R, Hatabu H, Tadamura E et al. (1996) Noninvasive assessment of regional ventilation in the human lung using exygen-enhanced magnetic resonance imaging. Nat Med 11:1236–1239

    Google Scholar 

  24. Eibel R, Herzog P, Dietrich O, Rieger C, Ostermann H, Reiser M, Schönberg S (2006) Nachweis von pneumonischen Infiltraten mit der MRT. Radiologe 46:267–274

    PubMed  CAS  Google Scholar 

  25. Estilaei M, MacKay A, Whittall K, Mayo J (1999) In vitro measurements of water content ant T 2 relaxatoin times in lung using a clinical MRI scanner. J Magn Reson Imaging 9:699–703

    PubMed  CAS  Google Scholar 

  26. Fiel SB, Friedman AC, Caroline DF, Radecki PD, Färber E, Grumbach K (1987) Magnetic resonance imaging in young adults with cystic fibrosis. Chest 91:181–184

    PubMed  CAS  Google Scholar 

  27. Fink C, Eichhorn J, Kiessling F, Bock M, Delorme S (2003) Time-resolved multiphasic 3D MR angiography in the diagnosis of the pulmonary vascular system in children. Fortschr Roentgenstr 175:929–935

    CAS  Google Scholar 

  28. Fink C, Puderbach M, Bock M, Lodemann KP, Zuna I, Schmahl A. Delorme S, Kauczor HU (2004) Regional lung perfusion: assessment with partially parallel three-dimensional MR imaging. Radiology 231:175–184

    PubMed  Google Scholar 

  29. Glazer GM, Orringer MB, Chenevert TL et al. (1988) Mediastinal lymph nodes: relaxation time/pathologic correlation and implications in staging of lung cancer with MR imaging. Radiology 168:429–431

    PubMed  CAS  Google Scholar 

  30. Hang JD, Guo QY, Chen CX, Chen LY (1996) Imaging approach to the diagnosis of pulmonary sequestration. Acta Radiol 37:883–888

    PubMed  CAS  Google Scholar 

  31. Hasegawa I, Eguchi K, Kohda E, Tanami Y, Mori T, Hatabu H, Kuribayashi S (2003) Pulmonary hilar lymph nodes in lung cancer; assessment with 3D-dynamic contrast-enhanced MR imaging. Eur Radiol 45:129–134

    Google Scholar 

  32. Heelan RT, Demas BE, Caravelli JF et al. (1989) Superior sulcus tumors: CT and MR imaging. Radiology 170:637–641

    PubMed  CAS  Google Scholar 

  33. Herold CJ, Kramer J, Sertl K, Kahls P, Mallek R, Imhof H, Tscholakoff D (1989) Invasive pulmonray aspergillos: evaluation with MR imaging. Radiology 173:717–721

    PubMed  CAS  Google Scholar 

  34. Herold CJ, Kuhlmann JE, Zerhouni EA (1991) Pulmonary atelectasis: signal patterns with MR imaging. Radiology 178:715–720

    PubMed  CAS  Google Scholar 

  35. Heussel CP, Sandner A, Voigtländer T, Heike M, Deimling M, Kuth R, Rupprecht T, Schreiber WG, Kauczor HU (2002) Prospective feasibility study of chest X-ray vs. thoracic MRI in breath-hold technique at an open low-field scanner. Fortschr Roentgenstr 174:1582

    Google Scholar 

  36. International Mesothelioma Interest Group (1995) A proposed new international TNM staging system for malignant pleural mesothelioma. Chest 108:1122–1128

    Google Scholar 

  37. Iwasawa T, Kagei S, Gotoh T, Yoshiike Y, Matsushita K, Kurihara H, Saito K, Matsubara S (2002) Magnetic resonance analysis of abnormal diaphragmatic motion in patients with emphysema. Eur Respir J 19:225–231

    PubMed  CAS  Google Scholar 

  38. Kim JH, Kim HJ, Lee KH, Lee HL (2004) Solitary pulmonary nodules: a comparative study evaluated with contrast-enhanced dynamic MR imaging and CT. J Comput Assist Tomogr 28:766–775

    PubMed  Google Scholar 

  39. Kluge A, Müller C, Strunk J, Lange U, Bachmann G (2006) Experience in 207 combined MRI examinations for acute pulmonary embolism and deep vein thrombosis. Am J Roentgenol 186:1986–1996

    Google Scholar 

  40. Knuuttila A, Kivisaari A et al. (2001) Evaluation of pleural disease using MR and CT. With special reference to malignant pleural mesothelioma. Acta Radiol 42:502–507

    PubMed  CAS  Google Scholar 

  41. Kono R, Fujimoto K, Terasaki H, Müller NL, Kato S, Sadohara J, Hayabuchi N, Takamori S (2007) Dynamic MRI of solitary pulmonary nodules: comparison of enhancement patterns of malignant and benign small peripheral lung lesions. Am J Roentgenol 188:26–36

    Google Scholar 

  42. Kushihashi T, Fujisawa H, Munechika H (1996) Magnetic resonance imaging of thymic epithelial tumor. Crit Rev Diagn Imag 37:191–259

    CAS  Google Scholar 

  43. Laissy JP, Gay-Depassier PH, Soyer PH, Dombret MC, Murciano G, Sautet A, Aubier M, Menu Y (1994) Enlarged mediastinal lymph nodes in bronchogenic carcinoma: assessment with dynamic contrast-enhanced MR imaging. Radiology 191:263–267

    PubMed  CAS  Google Scholar 

  44. Layer G, Schmitteckert H, Steudel A et al. (1999) MRT, CT und Sonographie in der präoperativen Beurteilung der Primärtumorausdehnung beim malignen Pleuramesotheliom. Fortschr Roentgenstr 170:365–370

    CAS  Google Scholar 

  45. Leutner C, Gieseke J, Lutterbey G et al. (1999) MRT versus CT in der Diagnostik von Pneumonien; Evaluation einer T 2-gewichteten ultrachnellen Turbo-Spin echo-Sequenz (UTSE) Fortschr Roentgenstr 170:449–456

    Google Scholar 

  46. Leutner C, Schild H (2001) MRT des Lungenparenchyms. Fortschr Roentgenstr 173:168–175

    CAS  Google Scholar 

  47. Ley S, Zaporozhan J, Morbach A, Eberle B, Gast KK, Heussel CP, Biedermann A, Mayer E, Schmiedeskamp J, Stepniak A, Schreiber WG, Kauczor HU (2004) Functional evaluation of emphysema using diffusion-weighted 3helium-magnetic resonance imaging, high-resolution computed tomography, and lung function tests. Invest Radiol 39:427–434

    PubMed  Google Scholar 

  48. Loffler R, Muller CJ, Peller M, Penzkofer H, Deimling M, Schwaiblmair M, Scheidler J, Reiser M (2000) Optimization and evaluation of the signal intensitiy change in multisection oxygen-enhanced MR lung imaging. Magn Reson Med 43:860–866

    PubMed  CAS  Google Scholar 

  49. Lutterbey G, Gieseke J, Sommer T, Keller E, Kuhl C, Schild H (1996) Ein neuer Ansatz in der Magnetresonanztomographie der Lunge mit einer ultrakurzen Turbo-Spin-echo-Sequenz (UTSE) Fortschr Roentgenstr 164

    Google Scholar 

  50. Lutterbey G, Gieseke J, von Falkenhausen M, Morakkabati N, Schild H (2005) Lung MRI at 3.0: a comparison of helical CT and high-field MRI in the detection of diffuse lung disease. Eur Radiol 15:324–328

    PubMed  CAS  Google Scholar 

  51. Lutterbey G, Leutner C, Gieseke J et al. (1998) Detektion fokaler Lungenläsionen mit der Magnetresonanz-Tomographie mittels T 2-gewichteter Ultrashort-Turbo-Spin-echo-Sequenz im Vergleich zur Spiral-Computer-Tomographie. Fortschr Roentgenstr 169:365–369

    CAS  Google Scholar 

  52. Mackay B, Lukeman JM, Ordonez NG (eds) (1991) Tumors of the pleura and chest wall. In: Tumors of the lung. Major problems in pathology series, vol. 24. Saunders, Philadelphia, pp 323–364

    Google Scholar 

  53. Maher MM, Shepard JA (2005) Imaging of thymoma. Semin Thorac Cardiovasc Surg 17:12–19

    PubMed  Google Scholar 

  54. McAdams HP, Kirejczyk WM, Rosado-de-Christenson ML, Matsumoto S (2000) Bronchogenic cyst: Imaging features with clinical and histopathologic correlation. Radiology 217:441–446

    PubMed  CAS  Google Scholar 

  55. McLoud TC, Filion RB, Edelman RR, Shepard JA (1989) MR imaging of superior sulcus carcinoma. J Comput Assist Tomogr 13:233–239

    PubMed  CAS  Google Scholar 

  56. Metintas M, Ucgun I, Elbek O et al. (2002) Computer tomography features in malignant pleural mesothelioma and other commonly seen pleural diseases. Eur J Radiol 41: 1–9

    PubMed  Google Scholar 

  57. Molinari F, Fink C, Risse F, Tuengerthal S, Bonomo L, Kauczor HU (2006a) Assessment of differential pulmonary blood flow using perfusion magnetic resonance imaging: comparison with radionuclide perfusion scintigraphy. Invest Radiol 41:624–630

    PubMed  Google Scholar 

  58. Molinari F, Gaudino S, Fink C, Corbo GM, Valente S, Pirronti T, Bonomo L (2006b) Simultaneous cardia and respiratory synchornization in oxygen-enhanced magnetic resonance imaging of the lung using a pneumotachograph for respiratory monitoring. Invest Radiol 41:476–485

    PubMed  Google Scholar 

  59. Morino S, Toba T, Araki M, Azuma T, Tsutsumi S, Tao H, Nakamura T, Nagayasu T, Tagawa T (2006) Noninvasive assessment of pulmonary emphysema using dynamic contrast-enhanced magnetic resonance imaging. Exp Lung Res 32:55–67

    PubMed  Google Scholar 

  60. Mueller NL, Mayo JR, Zwirewich CV (1992) Value of MR Imaging in the evaluation of chronic infiltrative lung diseases. AJR Am J Radiol 158:1205–1209

    Google Scholar 

  61. Muller CJ, Loffler R, Deimling M, Peller M, Reiser M (2001) MR lung imaging at 0.2 T with T 1-weighted true FISP: native and oxygen-enhanced. Magn Reson Imaging 14:164–168

    CAS  Google Scholar 

  62. Murayama S, Murakami J, Watanabe H et al. (1995) Signal intensity characteristics of mediastinal cystic masses on T 1-weighted MRI. J Comput Assist Tomogr 19:188–191

    PubMed  CAS  Google Scholar 

  63. Neumann V, Gunthe S, Müller KM, Fischer M (2001) Malignant mesothelioma—German Mesothelioma Register, 1987–1999. Int Arch Occup Environ Health 74:383–395

    PubMed  CAS  Google Scholar 

  64. Ngueyen BC, Stanford W, Thompson BH, Rossi NP, Kernstine KH, Kern JA, Robinson RA, Amorosa JK, Mammone JF, Outwater EK (1999) Multicenter clinical trial of ultrasmall superparamagnetic iron oxide in the evaluation of mediastinal lymph nodes in patients with primary lung carcinoma. Magn Reson Imaging 10:468–473

    Google Scholar 

  65. Nguyen BC, Stanford W, Thompson BH, Rossi NP, Kernstine KH, Kern JA, Robinson RA, Amorosa JK, Mammone JF, Outwater EK (1999) Multicenter clinical trial of ultrasmall superparamagnetic iron oxide in the evaluation of mediastinal lymph nodes in patients with primary lung carcinoma. Magn Reson Imaging 10:468–473

    CAS  Google Scholar 

  66. Ohno Y, Adachi S, Motoyama A, Kusumoto M, Hatabu H, Sugimura K, Kono M (2001) Multiphase ECG-triggered 3D contrast-enhanced MR angiography: utility for evaluation of hilar and mediastinal invasion of bronchogenic carcinoma. J Magn Reson Imaging 13:215–224

    PubMed  CAS  Google Scholar 

  67. Ohno Y, Hatabu H, Takenaka D, Adach S, Hirota S, Sugimura K (2002a) Contrast-enhanced MR perfusion imaging and MR angiography: utility for managnement of pulmonary arteriovenous malformations for embolotherapy. Eur J Radiol 41:136–146

    PubMed  Google Scholar 

  68. Ohno Y, Hatabu H, Takenaka D, Van Cauteren M, Fujii M, Sugimura K (2002b) Dynamic oxygen-enhanced MRI reflects diffusing capacity of the lung. Magn Reson Med 47:1139–1144

    PubMed  Google Scholar 

  69. Ohno Y, Hatabu H, Higashino T, Takenaka D, Watanabe H, Nishimura Y, Yoshimura M, Sugimura K (2004a) Dynamic perfusion MRI versus perfusion scintigraphy: prediction of postoperative lung function in patients with lung cancer. Am J Roentgenol 184:73–78

    Google Scholar 

  70. Ohno Y, Hatabu H, Takenaka D, Higashino T, Watanbe H, Ohbayashi C, Yoshimura M, Satouchi M, Nishimura Y, Sugimura K (2004b) Metastases in mediastinal and hilar lymph nodes in patients with non-small cell lung cancer: quantitative and qualitative assessment with STIR turbo spin-echo MR Imaging. Radiology 231:872–879

    PubMed  Google Scholar 

  71. Ost D, Fein AM, Feinsilver SH (2003) Clinical practice. The solitary pulmonary nodule. N Engl J Med 348:2535–2542

    PubMed  Google Scholar 

  72. Padovani B, Mouroux J, Seksik L et al. (1993) Chest wall invasion by bronchogenic carcinoma: evaluation with MR Imaging. Radiology 187:33–38

    PubMed  CAS  Google Scholar 

  73. Pannu HK, Wang KP, Borman TL, Bluemke DA (2000) MR imaging of mediastinal lymph nodes: evaluation using a superparamagnetic contrast agent. Magn Reson Imaging 12:899–904

    CAS  Google Scholar 

  74. Patz EF, Schaffer K, Piwnica-Worms DR et al. (1992) Malignant pleural mesothelioma: value of CT and MR imaging in predicting resectability. Am J Roentgenol 159:961–966

    Google Scholar 

  75. Peto J, Decarli A, La Vecchia C, Levi F, Negri E (1999) The European mesothelioma epidemic. Br J Cancer 79:666–672

    PubMed  CAS  Google Scholar 

  76. Pisani RJ, Colby TV, Williams DE (1988) Malignant mesothelioma of the pleura. Mayo Clin Proc 63:1234–1244

    PubMed  CAS  Google Scholar 

  77. Plathow C, Schoenbinger M, Fink C, Ley S, Puderbach M, Eichinger M, Bock M, Meinzer HP, Kauczor HU (2005) Evaluation of lung volumetry using dynamic three-dimensional magnetic resonance imaging. Invest Radiol 40:173–179

    PubMed  Google Scholar 

  78. Puderbach M, Eichinger M, Gahr J, Ley S, Tuengerthal S, Schmahl A, Fink C, Plathow C, Wiebel M, Muller FM, Kauczor HU (2007) Proton MRI appearance of cystic fibrosis: Comparison to CT. Eur Radiol 17:716–724

    PubMed  Google Scholar 

  79. Rahmouni A, Divine M, Lepage E, Jazaerli N, Belhadj K, Gaulard P, Golli M, Reyes F, Vasile N (2001) Mediastinal lymphoma: quantitative changes in gadolinium enhancement at MR imaging after treatment. Radiology 219:621–628

    PubMed  CAS  Google Scholar 

  80. Sakai F, Sone S, Kiyono K et al. (1994) MR of pulmonary hamartoma: pathologic correlation. J Thorac Imaging 9:51–55

    PubMed  CAS  Google Scholar 

  81. Samee S, Altes T, Powers P, de Lange EE, Knight-Scott J, Rakes G, Mugler JP 3rd, Ciambotti JM, Alford BA, Brookeman JR, Platts-Mills TA (2003) Imaging the lungs in asthmatic patients by using hyperpolarized helium-3 magnetic resonance: assessment of response to methacholine and exercise challenge. Allergy Clin Immunol 111:1205–1211

    CAS  Google Scholar 

  82. Schäfer JF, Vollmar J, Schick F, Seemann MD, Kamm P, Erdtmann B, Claussen CD (2005) Detektion von Lungenrundherden mit der Magnetresonanztomographie in Atemanhaltetechnik im Vergleich zur Spiral-Computer. Fortschr Roentgenstr 177:41–49

    Google Scholar 

  83. Schaefer JF, Vollmar J, Schick F, Vonthein R, Seemann MD, Aebert H, Dierkesmann R, Friedel G, Claussen CD (2004) Solitary pulmonary nodules: dynamic chontrast-enhanced MR imaging-perfusion differences in malignant and benign lesions. Radiology 232:544–553

    PubMed  Google Scholar 

  84. Schaefer JF, Schneider V, Vollmar J, Wehrmann M, Aebert H, Friedel G, Vonthein R, Schick F, Claussen CD (2006) Solitary pulmonary nodules: association between signal characteristics in dynamic contrast enhanced MRI and tumor angiogenesis. Lung Cancer 53:39–49

    PubMed  Google Scholar 

  85. Schroeder T, Ruehm SG, Debatin JF, Ladd ME, Barkhausen J, Goehde SC (2005) Detection of pulmonary nodules using a 2D HASTE MR Sequence: Comparison with MDCT. Am J Roentgenol 185:979–984

    Google Scholar 

  86. Sergiacomi G, Sodani G, Fabiano S, Manenti G, Spinelli A, Konda D, Di Roma M, Schillaci O, Simonetti G (2003) MRI lung perfusion 2D dynamic breath-hold technique in patients with servere emphysema. In Vivo 17:319–324

    PubMed  Google Scholar 

  87. Suga K, Tsukuda T, Awaya H, Takano K, Koike S, Matsunaga N, Sugi K, Esato K (1999) Impaired respiratory mechanics in pulmonary emphysema: evaluation with dynamic breathing MRI. Magn Reson Imaging 10:510–520

    CAS  Google Scholar 

  88. Swift AJ, Wild JM, Fichele S, Woodhouse N, Fleming S, Waterhouse J, Lawson RA, Paley MN, Van Beek EJ (2005) Emphysematous changes and normal variation in smokers and COPD patients using diffusion 3He MRI. Eur J Radiol 54:352–358

    PubMed  Google Scholar 

  89. Tanaka O, Kiryu T, Hirose Y, Iwata H, Hoshi H (2005) Neurogenic tumors of the mediastinum and chest wall: MR imaging appearance. Thorac Imaging 20:316–320

    Google Scholar 

  90. Vonk-Noordegraaf A, Marcus JT, Roseboom B, Postmus PE, Faes TJ, de Vries PM (1997) The effect of right ventricular hypertrophy on left ventricular ejection fraction in pulmonary emphysema. Chest 112:640–645

    PubMed  CAS  Google Scholar 

  91. Vonk-Noordegraaf A, van Wolferen SA, Marcus JT, Boonstra A, Postmus PE, Peeters JW, Peacock AJ (2005) Noninvasive assessment and monitoring of the pulmonary circulation. Eur Respir J 25:758–766

    PubMed  CAS  Google Scholar 

  92. Will O, Purkayastha S, Chan C, Athanasiou T, Darzi AW, Gedroyc W, Tekkis PP (2006) Diagnostic precision of nanoparticle-enhanced MRI for lymph-node metastases: a meta-analysis. Lancet Oncol 7:52–60

    PubMed  Google Scholar 

  93. Yamashita Y, Yokoyama T, Tomiguchi S et al. (1999) MR imaging of focal lung lesions: elimination of flow and motion artifact by breath-hold ECG-gated and black-blood techniques on T 2-weighted turbo SE and STIR sequences. J Magn Reson Imaging 9:691–698

    PubMed  CAS  Google Scholar 

  94. Zaporozhan J, Ley S, Gast KK, Schmiedeskamp J, Biedermann A, Eberle B, Kauczor HU (2004) Functional analysis in single-lung transplant recipients: a comparative study of high-resolution CT, 3He-MRI, and pulmonary function tests. Chest 125:173–181

    PubMed  Google Scholar 

Section 5.2

  1. American Cancer Society (2007) Breast cancer facts & figures 2005–2006. Available at http://www.cancer.org/docroot/stt/stt_0.asp. Cited 1 February 2006

    Google Scholar 

  2. American College of Radiology (2003) ACR BI-RADS. ACR breast imaging reporting and data system, breast imaging atlas, 4th edn. American College of Radiology, Reston, Va.

    Google Scholar 

  3. Berry DA, Iversen ES, Jr., Gudbjartsson DF et al. (2002) BRCAPRO validation, sensitivity of genetic testing of BRCA1/BRCA2, and prevalence of other breast cancer susceptibility genes. J Clin Oncol 20:2701–2712

    PubMed  Google Scholar 

  4. Brekelmans CT, Seynaeve C, Bartels CC et al. (2001) Effectiveness of breast cancer surveillance in BRCA1/2 gene mutation carriers and women with high familial risk. J Clin Oncol 19:924–930

    PubMed  CAS  Google Scholar 

  5. Dershaw DD (2000) Mammographic screening of the high-risk woman. Am J Surg 180:288–289

    PubMed  CAS  Google Scholar 

  6. Easton DF, Ford D, Bishop DT (1995) Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Am J Hum Genet 56:265–271

    PubMed  CAS  Google Scholar 

  7. Ford D, Easton DF, Stratton M et al. (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet 62:676–689

    PubMed  CAS  Google Scholar 

  8. Greenlee RT, Hill-Harmon MB, Murray T, Thun M (2001) Cancer statistics 2001. Cancer J Clin 51:15–36

    CAS  Google Scholar 

  9. Harms SE, Flamig DP, Hesley KL et al. (1993) MR imaging of the breast with rotating delivery of excitation off resonance: clinical experience with pathologic correlation. Radiology 187:493–501

    PubMed  CAS  Google Scholar 

  10. Hartmann LC, Sellers TA, Schaid DJ et al. (2001) Efficacy of bilateral prophylactic mastectomy in BRCA1 and BRCA2 gene mutation carriers. J Natl Cancer Inst 93:1633–1637

    PubMed  CAS  Google Scholar 

  11. Heywang SH, Wolf A, Pruss E, Hilbertz T, Eiermann W, Permanetter W (1989) MR imaging of the breast with Gd-DTPA: use and limitations. Radiology 171:95–103

    PubMed  CAS  Google Scholar 

  12. Kaiser WA, Zeitler E (1989) MR imaging of the breast: fast imaging sequences with and without Gd-DTPA. Preliminary observations. Radiology 170:681–686

    PubMed  CAS  Google Scholar 

  13. Kauff ND, Satagopan JM, Robson ME et al. (2002) Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 346:1609–1615

    PubMed  Google Scholar 

  14. Kerlikowske K, Grady D, Rubin SM, Sandrock C, Ernster VL (1995) Efficacy of screening mammography. A meta-analysis. JAMA 273:149–154

    PubMed  CAS  Google Scholar 

  15. King MC, Marks JH, Mandell JB (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA. Science 302:643–646

    PubMed  CAS  Google Scholar 

  16. Kolb TM, Lichy J, Newhouse JH (2002) Comparison of the performance of screening mammography, physical examination, and breast United States and evaluation of factors that influence them: an analysis of 27,825 patient evaluation Radiology 225:165–175

    Google Scholar 

  17. Kriege M, Brekelmans CT, Boetes C et al. (2004) Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med 351:427–437

    PubMed  CAS  Google Scholar 

  18. Kuhl CK, Schmutzler RK, Leutner CC et al. (2000) Breast MR imaging screening in 192 women proved or suspected to be carriers of a breast cancer susceptibility gene: preliminary results. Radiology 215:267–279

    PubMed  CAS  Google Scholar 

  19. Leach MO, Boggis CR, Dixon AK et al. (2005) Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet 365:1769–1778

    PubMed  CAS  Google Scholar 

  20. Lee CH (2002) Screening mammography: proven benefit, continued controversy. Radiol Clin North Am 40:395–407

    PubMed  Google Scholar 

  21. Lehman CD, Blume JD, Thickman D et al. (2005a) Added cancer yield of MRI in screening the contralateral breast of women recently diagnosed with breast cancer: results from the International Breast Magnetic Resonance Consortium (IBMC) trial. J Surg Oncol 92:9–15; discussion 15–16

    PubMed  Google Scholar 

  22. Lehman CD, Blume JD, Weatherall P, Thickman D, Hylton N, Warner E, Pisano E, Schnitt SJ, Gatsonis C, Schnall M, DeAngelis GA, Stomper P, Rosen EL, O’Loughlin M, Harms S, Bluemke DA (2005b) International Breast MRI Consortium Working Group. Screening women at high risk for breast cancer with mammography and magnetic resonance imaging. Cancer 103:1898–1905

    PubMed  Google Scholar 

  23. Liberman L, Morris EA, Lee MJ et al. (2002) Breast lesions detected on MR imaging: features and positive predictive value. AJR Am J Roentgenol 179:171–178

    PubMed  Google Scholar 

  24. Liberman L, Morris EA, Benton CL, Abramson AF, Dershaw DD (2003) Probably benign lesions at breast magnetic resonance imaging: preliminary experience in high-risk women. Cancer 98:377–388

    PubMed  Google Scholar 

  25. Meijers-Heijboer H, van Geel B, van Putten WL et al. (2001) Breast cancer after prophylactic bilateral mastectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 345:159–164

    PubMed  CAS  Google Scholar 

  26. Morris EA, Liberman L, Ballon DJ et al. (2003) MRI of occult breast carcinoma in a high-risk population. AJR Am J Roentgenol 181:619–626

    PubMed  Google Scholar 

  27. Narod SA, Brunet JS, Ghadirian P et al. (2000) Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Hereditary Breast Cancer Clinical Study Group. Lancet 356:1876–1881

    PubMed  CAS  Google Scholar 

  28. National Cancer Institute (1998) SEER cancer statistics review, 1973–1995. National Cancer Institute, Bethesda, Md.

    Google Scholar 

  29. National Cancer Institute (2006) Genetics of breast and ovarian cancer (PDQ). Available at: http://www.cancer.gov/cancertopics/pdq/genetics/breast-and-ovarian/healthprofessional. Cited 1 February 2006

    Google Scholar 

  30. Orel SG, Schnall MD, Powell CM et al. (1995) Staging of suspected breast cancer: effect of MR imaging and MR-guided biopsy. Radiology 196:115–122

    PubMed  CAS  Google Scholar 

  31. Pisano ED, Gatsonis C, Hendrick E, Yaffe M, Baum JK, Acharyya S, Conant EF, Fajardo LL, Bassett L, D’Orsi C, Jong R, Rebner M (2005) Digital Mammographic Imaging Screening Trial (DMIST) Investigators Group diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med 353:1773–1783

    PubMed  CAS  Google Scholar 

  32. Podo F, Sardanelli F, Canese R et al. (2002) The Italian multi-centre project on evaluation of MRI and other imaging modalities in early detection of breast cancer in subjects at high genetic risk. J Exp Clin Cancer Res 21:115–124

    PubMed  CAS  Google Scholar 

  33. Rebbeck TR, Levin AM, Eisen A et al. (1999) Breast cancer risk after bilateral prophylactic oophorectomy in BRCA1 mutation carriers. J Natl Cancer Inst 91:1475–1479

    PubMed  CAS  Google Scholar 

  34. Rebbeck TR, Friebel T, Lynch HT et al. (2004) Bilateral prophylactic mastectomy reduces breast cancer risk in BRCA1 and BRCA2 mutation carriers: the PROSE Study Group. J Clin Oncol 22:1055–1062

    PubMed  Google Scholar 

  35. Shapiro S, Venet W, Strax P, Venet L, Roeser R (1982) Ten- to fourteen-year effect of screening on breast cancer mortality. J Natl Cancer Inst 69:349–355

    PubMed  CAS  Google Scholar 

  36. Smith RA, Cokkinides V, Eyre HJ (2005) American Cancer Society guidelines for the early detection of cancer, 2001. Cancer J Clin 55:31–44; quiz 55–36

    Google Scholar 

  37. Stoutjesdijk MJ, Boetes C, Jager GJ et al. (2001) Magnetic resonance imaging and mammography in women with a hereditary risk of breast cancer. J Natl Cancer Inst 93:1095–1102

    PubMed  CAS  Google Scholar 

  38. Tabar L, Fagerberg CJ, Gad A, Baldetorp L, Holmberg LH, Grontoft O et al. (1985) Reduction in mortality from breast cancer after mass screening with mammography. Randomised trial from the Breast Cancer Screening Working Group of the Swedish National Board of Health and Welfare. Lancet 1:829–832

    PubMed  CAS  Google Scholar 

  39. Tabar L, Vitak B, Chen HH et al. (2000) The Swedish Two-County Trial twenty years later. Updated mortality results and new insights from long-term follow-up. Radiol Clin North Am 38:625–651

    PubMed  CAS  Google Scholar 

  40. Tilanus-Linthorst MM, Obdeijn IM, Bartels KC, de Koning HJ, Oudkerk M (2000) First experiences in screening women at high risk for breast cancer with MR imaging. Breast Cancer Res Treat 63:53–60

    PubMed  CAS  Google Scholar 

  41. Tilanus-Linthorst M, Verhoog L, Obdeijn IM et al. (2002) A BRCA1/2 mutation, high breast density and prominent pushing margins of a tumor independently contribute to a frequent false-negative mammography. Int J Cancer 102:91–95

    PubMed  CAS  Google Scholar 

  42. Tilanus-Linthorst MM, Kriege M, Boetes C et al. (2005) Hereditary breast cancer growth rates and its impact on screening policy. Eur J Cancer 41:1610–1617

    PubMed  Google Scholar 

  43. Warner E, Plewes DB, Hill KA et al. (2004) Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA 292:1317–1325

    PubMed  CAS  Google Scholar 

  44. Warren RM, Pointon L, Caines R, Hayes C, Thompson D, Leach MO (2002) What is the recall rate of breast MRI when used for screening asymptomatic women at high risk? Magn Reson Imaging 20:557–565

    PubMed  Google Scholar 

  45. Welch HG, Black WC (1997) Using autopsy series to estimate the disease “reservoir” for ductal carcinoma in situ of the breast: how much more breast cancer can we find? Ann Intern Med 127:1023–1028

    PubMed  CAS  Google Scholar 

Section 5.3.1

  1. Arai AE (2000) Magnetic resonance first-pass myocardial perfusion imaging. Top Magn Reson Imaging 11:383–398

    PubMed  CAS  Google Scholar 

  2. Atkinson DJ, Edelman RR (1991) Cineangiography of the heart in a single breath hold with a segmented turboFLASH sequence. Radiology 178:357–360

    PubMed  CAS  Google Scholar 

  3. Barkhausen J et al. (2004) Imaging of myocardial perfusion with magnetic resonance. J Magn Reson Imaging 19:750–757

    PubMed  Google Scholar 

  4. Barkhausen, J et al. (2004) MRI in coronary artery disease. Eur Radiol 14:2155–2162

    PubMed  Google Scholar 

  5. Cerqueira MD et al. (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    PubMed  Google Scholar 

  6. Constantine G et al. (2004) Role of MRI in clinical cardiology. Lancet 363:2162–2171

    PubMed  Google Scholar 

  7. Di Bella EV et al. (2005) On the dark rim artifact in dynamic contrast-enhanced MRI myocardial perfusion studies. Magn Reson Med 54:1295–1299

    PubMed  Google Scholar 

  8. Fischer SE et al. (1999) Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 42:361–370

    PubMed  CAS  Google Scholar 

  9. Gutberlet M et al. (2006) Comprehensive cardiac magnetic resonance imaging at 3.0 Tesla: feasibility and implications for clinical applications. Invest Radiol 41:154–167

    PubMed  Google Scholar 

  10. Huber AM et al. (2006) Phase-sensitive inversion recovery (PSIR) single-shot TrueFISP for assessment of myocardial infarction at 3 Tesla. Invest Radiol 41:148–153

    PubMed  Google Scholar 

  11. Huber AM et al. (2005) Value of phase-sensitive inversion recovery (PSIR) for detection of myocardial infarction. Radiology 237:854–860

    PubMed  Google Scholar 

  12. Hunold P et al. (2005) Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. AJR Am J Roentgenol 184:1420–1426

    PubMed  Google Scholar 

  13. Nagel E et al. (2003) Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 108:432–437

    PubMed  Google Scholar 

  14. Post JC et al. (1996) Three-dimensional respiratory-gated MR angiography of coronary arteries: comparison with conventional coronary angiography. AJR Am J Roentgenol 166:1399–1404

    PubMed  CAS  Google Scholar 

  15. Rebergen SA, de Roos A (2000) Congenital heart disease. Evaluation of anatomy and function by MRI. Herz 25:365–383

    PubMed  CAS  Google Scholar 

  16. Reeder SB et al. (2005) Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med 54:748–754

    PubMed  Google Scholar 

  17. Roos A de, Roest AA (2000) Evaluation of congenital heart disease by magnetic resonance imaging. Eur Radiol 10:2–6

    PubMed  Google Scholar 

  18. Setser RM et al. (2000) Quantification of left ventricular function with magnetic resonance images acquired in real time. J Magn Reson Imaging 12:430–438

    PubMed  CAS  Google Scholar 

  19. Simonetti OP et al. (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218:215–223

    PubMed  CAS  Google Scholar 

  20. Sommer T et al. (2005) Coronary MR angiography at 3.0 T versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. Radiology 234:718–725

    PubMed  Google Scholar 

  21. Spuentrup E et al. (2002) Navigator-gated free-breathing three-dimensional balanced fast field echo (TrueFISP) coronary magnetic resonance angiography. Invest Radiol 37:637–642

    PubMed  Google Scholar 

  22. Spuentrup E et al. (2003) Navigator-gated coronary magnetic resonance angiography using steady-state-free-precession: comparison to standard T 2-prepared gradient-echo and spiral imaging. Invest Radiol 38:263–268

    PubMed  Google Scholar 

  23. Stuber M et al. (1999) Breathhold three-dimensional coronary magnetic resonance angiography using real-time navi­gator technology. J Cardiovasc Magn Reson 1:233–238

    PubMed  CAS  Google Scholar 

  24. Stuber M et al. (2002) Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magn Reson Med 48:425–429

    PubMed  Google Scholar 

  25. Wang Y et al. (2005) Myocardial first pass perfusion: steady-state free precession versus spoiled gradient-echo and segmented echo planar imaging. Magn Reson Med 54:1123–1129

    PubMed  Google Scholar 

  26. Weissler AM et al. (1968) Systolic time intervals in heart failure in man. Circulation 37:149–159

    PubMed  CAS  Google Scholar 

  27. Wen H et al. (1997) The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3, and 4 T. J Magn Reson 125:65–71

    PubMed  CAS  Google Scholar 

  28. Wilke N et al. (1997) Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 204:373–384

    PubMed  CAS  Google Scholar 

  29. Wintersperger BJ et al. (2006a) Cardiac steady-state free precession CINE magnetic resonance imaging at 3.0 Tesla: impact of parallel imaging acceleration on volumetric accuracy and signal parameters. Invest Radiol 41:141–147

    PubMed  Google Scholar 

  30. Wintersperger BJ et al. (2006b) Cardiac CINE MR imaging with a 32-channel cardiac coil and parallel imaging: impact of acceleration factors on image quality and volumetric accuracy. J Magn Reson Imaging 23:222–227

    PubMed  Google Scholar 

Section 5.3.2

  1. Baran R, Kir A, Tor MM, Ozvaran K, Tunaci A (1996) Scimitar syndrome: confirmation of diagnosis by a noninvasive technique (MRI). Eur Radiol 6:92–94

    PubMed  CAS  Google Scholar 

  2. Beekman RP, Beek FJ, Meijboom EJ, Wenink AC (1996( MRI appearance of a double inlet and double outlet right ventricle with supero-inferior ventricular relationship. Magn Reson Imaging 14:1107–1112

    Google Scholar 

  3. Beerbaum P, Korperich H, Barth P, Esdorn H, Gieseke J, Meyer H (2001) Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation 103:2476–2482

    PubMed  CAS  Google Scholar 

  4. Brenner LD, Caputo GR, Mostbeck G et al. (1992) Quantification of left to right atrial shunts with velocity-encoded cine nuclear magnetic resonance imaging. J Am Coll Cardiol 20:1246–1250

    PubMed  CAS  Google Scholar 

  5. Chien CT, Lin CS, Hsu YH, Lin MC, Chen KS, Wu DJ (1991) Potential diagnosis of hemodynamic abnormalities in patent ductus arteriosus by cine magnetic resonance imaging. Am Heart J 122:1065–1073

    PubMed  CAS  Google Scholar 

  6. Choe YH, Kim YM, Han BK, Park KG, Lee HJ (1997) MR imaging in the morphologic diagnosis of congenital heart disease. Radiographics 17:403–422

    PubMed  CAS  Google Scholar 

  7. Choi YH, Park JH, Choe YH, Yoo SJ (1994) MR imaging of Ebstein’s anomaly of the tricuspid valve. AJR Am J Roentgenol 163:539–543

    PubMed  CAS  Google Scholar 

  8. Dohlemann C, Mantel K, Vogl TJ et al. (1995) Pulmonary sling: morphological findings. Pre- and postoperative course. Eur J Pediatr 154:2–14

    PubMed  CAS  Google Scholar 

  9. Fogel MA, Weinberg PM, Fellows KE, Hoffman EA (1995) A study in ventricular-ventricular interaction. Single right ventricles compared with systemic right ventricles in a dual-chamber circulation. Circulation 92:219–230

    PubMed  CAS  Google Scholar 

  10. Fogel MA, Wilson RD, Flake A et al. (2005) Preliminary investigations into a new method of functional assessment of the fetal heart using a novel application of ‘real-time’ cardiac magnetic resonance imaging. Fetal Diagn Ther 20:475–480

    PubMed  Google Scholar 

  11. Goldmuntz E, Clark BJ, Mitchell LE et al. (1998) Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol 32:492–498

    PubMed  CAS  Google Scholar 

  12. Hata K, Hata T, Manabe A, Kitao M (1995) Hypoplastic left heart syndrome: color Doppler sonographic and magnetic resonance imaging features in utero. Gynecol Obstet Invest 39:70–72

    PubMed  CAS  Google Scholar 

  13. Ichida F, Hashimoto I, Miyazaki A et al. (1992) [Magnetic resonance imaging: evaluation of the Blalock-Taussig shunts and anatomy of the pulmonary artery]. J Cardiol 22:669–678

    PubMed  CAS  Google Scholar 

  14. Ito N, Maie S, Furukawa Y et al. (2000) [Left partial anomalous pulmonary venous return to the innominate and hepatic veins]. Nippon Naika Gakkai Zasshi 89:1185–1187

    PubMed  CAS  Google Scholar 

  15. Kastler B, Livolsi A, Zhu H, Roy E, Zollner G, Dietemann JL (1990) Potential role of MR imaging in the diagnostic management of Ebstein anomaly in a newborn. J Comput Assist Tomogr 14:825–827

    PubMed  CAS  Google Scholar 

  16. Kersting-Sommerhoff BA, Seelos KC, Hardy C, Kondo C, Higgins SS, Higgins CB (1990) Evaluation of surgical procedures for cyanotic congenital heart disease by using MR imaging. AJR Am J Roentgenol 155:259–266

    PubMed  CAS  Google Scholar 

  17. Khambadkone S, Bonhoeffer P (2004) Nonsurgical pulmonary valve replacement: why, when, and how? Catheter Cardiovasc Interv 62:401–408

    PubMed  Google Scholar 

  18. Khambadkone S, Coats L, Taylor A et al. (2005) Percutaneous pulmonary valve implantation in humans: results in 59 consecutive patients. Circulation 112:1189–1197

    PubMed  Google Scholar 

  19. Kondo C, Hardy C, Higgins SS, Young JN, Higgins CB (1991) Nuclear magnetic resonance imaging of the palliative operation for hypoplastic left heart syndrome. J Am Coll Cardiol 18:817–823

    PubMed  CAS  Google Scholar 

  20. Kurotobi S, Sano T, Naito H et al. (1998) Regional ventricular systolic abnormalities caused by a rudimentary chamber in patients with univentricular hearts. Am J Cardiol 82:86–92

    PubMed  CAS  Google Scholar 

  21. Link KM, Herrera MA, D’Souza VJ, Formanek AG (1988) MR imaging of Ebstein anomaly: results in four cases. AJR Am J Roentgenol 150:363–367

    PubMed  CAS  Google Scholar 

  22. Livolsi A, Kastler B, Marcellin L, Casanova R, Bintner M, Haddad J (1991) MR diagnosis of subdiaphragmatic anomalous pulmonary venous drainage in a newborn. J Comput Assist Tomogr 15:1051–1053

    PubMed  CAS  Google Scholar 

  23. Masui T, Seelos KC, Kersting-Sommerhoff BA, Higgins CB (1991) Abnormalities of the pulmonary veins: evaluation with MR imaging and comparison with cardiac angiography and echocardiography. Radiology 181:645–649

    PubMed  CAS  Google Scholar 

  24. Masui T, Katayama M, Kobayashi S et al. (2000) Gadolinium-enhanced MR angiography in the evaluation of congenital cardiovascular disease pre- and postoperative states in infants and children. J Magn Reson Imaging 12:1034–1042

    PubMed  CAS  Google Scholar 

  25. Parsons JM, Baker EJ, Anderson RH et al. (1990) Morphological evaluation of atrioventricular septal defects by magnetic resonance imaging. Br Heart J 64:138–145

    PubMed  CAS  Google Scholar 

  26. Parsons JM, Baker EJ, Anderson RH et al. (1991) Double-outlet right ventricle: morphologic demonstration using nuclear magnetic resonance imaging. J Am Coll Cardiol 18:168–178

    PubMed  CAS  Google Scholar 

  27. Powell AJ, Chung T, Landzberg MJ, Geva T (2000) Accuracy of MRI evaluation of pulmonary blood supply in patients with complex pulmonary stenosis or atresia. Int J Card Imaging 16:169–174

    PubMed  CAS  Google Scholar 

  28. Prasad SK, Soukias N, Hornung T et al. (2004) Role of magnetic resonance angiography in the diagnosis of major aortopulmonary collateral arteries and partial anomalous pulmonary venous drainage. Circulation 109:207–214

    PubMed  Google Scholar 

  29. Razavi R, Miquel M, Baker E (2004) Diagnosis of hemi-truncus arteriosis by three-dimensional magnetic resonance angiography. Circulation 109:E15–E16

    PubMed  Google Scholar 

  30. Roos A de, Roest AA (2000) Evaluation of congenital heart disease by magnetic resonance imaging. Eur Radiol 10:2–6

    PubMed  Google Scholar 

  31. Sade RM, Fyfe DA (1990) Tricuspid atresia: current concepts in diagnosis and treatment. Pediatr Clin North Am 37:151–169

    PubMed  CAS  Google Scholar 

  32. Sahn DJ (2000) Accuracy of MRI evaluation of pulmonary blood supply in patients with complex pulmonary stenosis or atresia. Int J Card Imaging 16:479–480

    PubMed  CAS  Google Scholar 

  33. Sierra J, Beghetti M, Kalangos A (2004) Truncus arteriosus repair with double aortic homograft. J Card Surg 19:252–253

    PubMed  CAS  Google Scholar 

  34. Tuma S, Lizler J, Fendrych P, Hruda J, Bartakova H (1993) [Magnetic resonance imaging of the postoperative status in children with congenital heart defects]. Cesk Pediatr 48:645–647

    PubMed  CAS  Google Scholar 

  35. Wang ZJ, Reddy GP, Gotway MB, Yeh BM, Higgins CB (2003) Cardiovascular shunts: MR imaging evaluation. Radiographics 23(Spec no.):S181–S194

    PubMed  Google Scholar 

  36. Weiss F, Habermann CR, Lilje C et al. (2002) [MRI in postoperative assessment of univentricular heart disease: correlation with echocardiography and angiography]. RoFo 174:1537–1543

    PubMed  CAS  Google Scholar 

  37. Yoo SJ, Kim YM, Choe YH (1999) Magnetic resonance imaging of complex congenital heart disease. Int J Card Imaging 15:151–160

    PubMed  CAS  Google Scholar 

Section 5.3.3

  1. Arad M, Penas-Lado M, Monserrat L, Maron BJ, Sherrid M, Ho CY, Barr S, Karim A, Olson TM, Kamisago M, Seidman JG, Seidman CE (2005) Gene mutations in apical hypertrophic cardiomyopathy. Circulation 112:2805–2811

    PubMed  CAS  Google Scholar 

  2. Basso C, Thiene G, Corrado D, Angelini A, Nava A, Valente M (1996) Arrhythmogenic right ventricular cardiomyopathy. Dysplasia, dystrophy, or myocarditis? Circulation 94:983–991

    PubMed  CAS  Google Scholar 

  3. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, Pennell DJ (2000) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 21:1387–1396

    PubMed  CAS  Google Scholar 

  4. Bluemke DA, Krupinski EA, Ovitt T, Gear K, Unger E, Axel L, Boxt LM, Casolo G, Ferrari VA, Funaki B, Globits S, Higgins CB, Julsrud P, Lipton M, Mawson J, Nygren A, Pennell DJ, Stillman A, White RD, Wichter T, Marcus F (2003) MR Imaging of arrhythmogenic right ventricular cardiomyopathy: morphologic findings and interobserver reliability. Cardiology 99:153–162

    PubMed  Google Scholar 

  5. Brown CA, O’Connell JB (1995) Myocarditis and idiopathic dilated cardiomyopathy. Am J Med 99:309–314

    PubMed  CAS  Google Scholar 

  6. Choudhury L, Mahrholdt H, Wagner A, Choi KM, Elliott MD, Klocke FJ, Bonow RO, Judd RM, Kim RJ (2002) Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 40:2156–2164

    PubMed  Google Scholar 

  7. Corrado D, Basso C, Thiene G (2000) Arrhythmogenic right ventricular cardiomyopathy: diagnosis, prognosis, and treatment. Heart 83:588–595

    PubMed  CAS  Google Scholar 

  8. Dec GW, Fuster V (1994) Idiopathic dilated cardiomyopathy. N Engl J Med 331:1564–1575

    PubMed  CAS  Google Scholar 

  9. Devlin AM, Moore NR, Ostman-Smith I (1999) A comparison of MRI and echocardiography in hypertrophic cardiomyopathy. Br J Radiol 72:258–264

    PubMed  CAS  Google Scholar 

  10. Didier D, Ratib O, Lerch R, Friedli B (2000) Detection and quantification of valvular heart disease with dynamic cardiac MR imaging. Radiographics 20:1279–1299

    PubMed  CAS  Google Scholar 

  11. Doherty NE 3rd, Seelos KC, Suzuki J, Caputo GR, O’Sul­livan M, Sobol SM, Cavero P, Chatterjee K, Parmley WW, Higgins CB (1992a) Application of cine nuclear magnetic resonance imaging for sequential evaluation of response to angiotensin-converting enzyme inhibitor therapy in dilated cardiomyopathy. J Am Coll Cardiol 19:1294–1302

    PubMed  Google Scholar 

  12. Doherty NE, Seelos KC, Suzuki J, Caputo GR, O’Sullivan M, Sobol SM, Cavero P, Chatterjee K, Parmlej WW, Higgins CB (1992b) Application of cine nuclear magnetic resonance imaging for sequential evaluation of response to angiotenin-converting enzyme inhibitor therapy in dilatated cardiomyopathy. J Am Coll Cardiol 19:1294–1302

    PubMed  Google Scholar 

  13. Ehlert FA, Cannom DS, Renfroe EG, Greene HL, Ledingham R, Mitchell LB, Anderson JL, Halperin BD, Herre JM, Luceri RM, Marinchak RA, Steinberg JS (2001) Comparison of dilated cardiomyopathy and coronary artery disease in patients with life-threatening ventricular arrhythmias: Differences in presentation and outcome in the AVID registry. Am Heart J 142:816–822

    PubMed  CAS  Google Scholar 

  14. Ennis DB, Epstein FH, Kellman P, Fananapazir L, McVeigh ER, Arai AE (2003) Assessment of regional systolic and diastolic dysfunction in familial hypertrophic cardiomyopathy using MR tagging. Magn Reson Med 50:638–642

    PubMed  Google Scholar 

  15. Fontaine G, Fontaliran F, Frank R (1998) Arrhythmogenic right ventricular cardiomyopathies: clinical forms and main differential diagnoses. Circulation 97:1532–1535

    PubMed  CAS  Google Scholar 

  16. Groenning BA, Nilsson JC, Sondergaard L, Fritz-Hansen T, Larsson HB, Hildebrandt PR (2000) Antiremodeling effects on the left ventricle during beta-blockade with metoprolol in the treatment of chronic heart failure. J Am Coll Cardiol 36:2072–2080

    PubMed  CAS  Google Scholar 

  17. Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, Pennell DJ (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 90:29–34

    PubMed  Google Scholar 

  18. Hancock EW (2004) A clearer view of effusive-constrictive pericarditis. N Engl J Med 350:435–437

    PubMed  CAS  Google Scholar 

  19. Hartiala JJ, Mostbeck GH, Foster E, Fujita N, Dulce MC, Chazouilleres AF, Higgins CB (1993) Velocity-encoded cine MRI in the evaluation of left ventricular diastolic function: measurement of mitral valve and pulmonary vein flow velocities and flow volume across the mitral valve. Am Heart J 125:1054–1066

    PubMed  CAS  Google Scholar 

  20. Katoh H, Murakami R, Shimada T (2001) Cine magnetic resonance imaging of isolated right ventricular outflow obstruction in hypertrophic cardiomyopathy. Clin Radiol 56:516–519

    PubMed  CAS  Google Scholar 

  21. Kayser HW, van der Wall EE, Sivananthan MU, Plein S, Bloomer TN, De Roos A (2002) Diagnosis of arrhythmogenic right ventricular dysplasia: a review. Radiographics 22:639–648

    PubMed  Google Scholar 

  22. Kayser HW, De Roos A, Schalij MJ, Bootsma M, Wellens HJ, van der Wall EE (2003) Usefulness of magnetic resonance imaging in diagnosis of arrhythmogenic right ventricular dysplasia and agreement with electrocardiographic criteria. Am J Cardiol 91:365–367

    PubMed  Google Scholar 

  23. Kies P, Bootsma M, Bax J, Schalij MJ, van der Wall EE (2006) Arrhythmogenic right ventricular dysplasia/cardiomyopathy: screening, diagnosis, and treatment. Heart Rhythm 3:225–234

    PubMed  Google Scholar 

  24. Kushwaha SS, Fallon JT, Fuster V (1997) Restrictive cardiomyopathy. N Engl J Med 336:267–276

    PubMed  CAS  Google Scholar 

  25. Leeuw N de, Ruiter DJ, Balk AH, de Jonge N, Melchers WJ, Galama JM (2001) Histopathologic findings in explanted heart tissue from patients with end-stage idiopathic dilated cardiomyopathy. Transpl Int 14:299–306

    PubMed  Google Scholar 

  26. Liberthson RR (1996) Sudden death from cardiac causes in children and young adults. N Engl J Med 334:1039–1044

    PubMed  CAS  Google Scholar 

  27. Mandinov L, Eberli FR, Seiler C, Hess OM (2000) Diastolic heart failure. Cardiovasc Res 45:813–825

    PubMed  CAS  Google Scholar 

  28. Maron BJ (2002 Hypertrophic cardiomyopathy: a systematic review. JAMA 287:1308–1320

    Google Scholar 

  29. Masui T, Finck S, Higgins CB (1992) Constrictive pericarditis and restrictive cardiomyopathy: evaluation with MR imaging. Radiology 182:369–373

    PubMed  CAS  Google Scholar 

  30. McCrohon JA, Moon JC, Prasad SK, McKenna WJ, Lorenz CH, Coats AJ, Pennell DJ (2003) Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 108:54–59

    PubMed  CAS  Google Scholar 

  31. McKenna WJ, Thiene G, Nava A, Fontaliran F, Blomstrom-Lundqvist C, Fontaine G, Camerini F (1994) Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br Heart J 71:215–218

    PubMed  CAS  Google Scholar 

  32. Miller S, Riessen R (2005) [MR imaging in cardiomyopathies]. Rofo 177:1497–1505

    PubMed  CAS  Google Scholar 

  33. Moon JC, McKenna WJ, McCrohon JA, Elliott PM, Smith GC, Pennell DJ (2003) Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol 41:1561–1567

    PubMed  Google Scholar 

  34. Osterziel KJ, Strohm O, Schuler J, Friedrich M, Hanlein D, Willenbrock R, Anker SD, Poole-Wilson PA, Ranke MB, Dietz R (1998) Randomised, double-blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet 351:1233–1237

    PubMed  CAS  Google Scholar 

  35. Parga JR, Avila LF, Bacal F, Moreira LF, Stolf NG, Ramires JA, Bocchi EA (2001) Partial left ventriculectomy in severe idiopathic dilated cardiomyopathy: assessment of short-term results and their impact on late survival by magnetic resonance imaging. J Magn Reson Imaging 13:781–786

    PubMed  CAS  Google Scholar 

  36. Pinamonti B, Sinagra G, Camerini F (2000) Clinical relevance of right ventricular dysplasia/cardiomyopathy. Heart 83:9–11

    PubMed  CAS  Google Scholar 

  37. Pons-Llado G, Carreras F, Borras X, Palmer J, Llauger J, Bayes DL (1997) Comparison of morphologic assessment of hypertrophic cardiomyopathy by magnetic resonance versus echocardiographic imaging. Am J Cardiol 79:1651–1656

    PubMed  CAS  Google Scholar 

  38. Prasad SK, Assomull RG, Pennell DJ (2004) Recent developments in non-invasive cardiology. BMJ 329:1386–1389

    PubMed  Google Scholar 

  39. Rampazzo A, Beffagna G, Nava A, Occhi G, Bauce B, Noiato M, Basso C, Frigo G, Thiene G, Towbin J, Danieli GA (2003) Arrhythmogenic right ventricular cardiomyopathy type 1 (ARVD1): confirmation of locus assignment and mutation screening of four candidate genes. Eur J Hum Genet 11:69–76

    PubMed  CAS  Google Scholar 

  40. Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ (2003) Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 289:194–202

    PubMed  Google Scholar 

  41. Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, Olsen E, Thiene G, Goodwin J, Gyarfas I, Martin I, Nordet P (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology task Force on the definition and classification of cardiomyopathies. Circulation 93:841–842

    PubMed  CAS  Google Scholar 

  42. Rossi A, Cicoira M, Zanolla L, Sandrini R, Golia G, Zardini P, Enriquez-Sarano M (2002) Determinants and prognostic value of left atrial volume in patients with dilated cardiomyopathy. J Am Coll Cardiol 40:1425

    PubMed  Google Scholar 

  43. Scheffold T, Binner P, Erdmann J, Schunkert H (2005) [Hypertrophic cardiomyopathy]. Herz 30:550–557

    PubMed  Google Scholar 

  44. Schoenfeld MH, Supple EW, Dec GW Jr, Fallon JT, Palacios IF (1987) Restrictive cardiomyopathy versus constrictive pericarditis: role of endomyocardial biopsy in avoiding unnecessary thoracotomy. Circulation 75:1012–1017

    PubMed  CAS  Google Scholar 

  45. Schulz-Menger J, Strohm O, Waigand J, Uhlich F, Dietz R, Friedrich MG (2000) The value of magnetic resonance imaging of the left ventricular outflow tract in patients with hypertrophic obstructive cardiomyopathy after septal artery embolization. Circulation 101:1764–1766

    PubMed  CAS  Google Scholar 

  46. Sen-Chowdhry S, Prasad SK, McKenna WJ (2005) Arrhythmogenic right ventricular cardiomyopathy with fibrofatty atrophy, myocardial oedema, and aneurysmal dilation. Heart 91:784

    PubMed  CAS  Google Scholar 

  47. Soler R, Rodriguez E, Rodriguez JA, Perez ML, Penas M (1997) Magnetic resonance imaging of apical hypertrophic cardiomyopathy. J Thorac Imaging 12:221–225

    PubMed  CAS  Google Scholar 

  48. Soler R, Rodriguez E, Marini M (1999) Left ventricular mass in hypertrophic cardiomyopathy: assessment by three-dimensional and geometric MR methods. J Comput Assist Tomogr 23:577–582

    PubMed  CAS  Google Scholar 

  49. Soler R, Rodriguez E, Remuinan C, Bello MJ, Diaz A (2003) Magnetic resonance imaging of primary cardiomyopathies. J Comput Assist Tomogr 27:724–734

    PubMed  Google Scholar 

  50. Strohm O, Schulz-Menger J, Pilz B, Osterziel KJ, Dietz R, Friedrich MG (2001) Measurement of left ventricular dimensions and function in patients with dilated cardiomyopathy. J Magn Reson Imaging 13:367–371

    PubMed  CAS  Google Scholar 

  51. Takeda N (2003) Cardiomyopathy: molecular and immunological aspects (review). Int J Mol Med 11:13–16

    PubMed  CAS  Google Scholar 

  52. Tandri H, Bomma C, Calkins H, Bluemke DA (2004a) Magnetic resonance and computed tomography imaging of arrhythmogenic right ventricular dysplasia. J Magn Reson Imaging 19:848–858

    PubMed  Google Scholar 

  53. Tandri H, Friedrich MG, Calkins H, Bluemke DA (2004b) MRI of arrhythmogenic right ventricular cardiomyopathy/dysplasia. J Cardiovasc Magn Reson 6:557–563

    PubMed  Google Scholar 

  54. Thiene G, Nava A, Corrado D, Rossi L, Pennelli N (1988) Right ventricular cardiomyopathy and sudden death in young people. N Engl J Med 318:129–133

    PubMed  CAS  Google Scholar 

  55. Waxman S, Eustace S, Hartnell GG (1994) Myocardial involvement in primary hemochromatosis demonstrated by magnetic resonance imaging. Am Heart J 128:1047–1049

    PubMed  CAS  Google Scholar 

  56. White RD, Obuchowski NA, Gunawardena S, Lipchik EO, Lever HM, Van Dyke CW, Lytle BW (1996) Left ventricular outflow tract obstruction in hypertrophic cardiomyopathy: presurgical and postsurgical evaluation by computed tomography magnetic resonance imaging. Am J Card Imaging 10:1–13

    PubMed  CAS  Google Scholar 

  57. White RD, Trohman RG, Flamm SD, VanDyke CW, Optican RJ, Sterba R, Obuchowski NA, Carlson MD, Tchou PJ (1998) Right ventricular arrhythmia in the absence of arrhythmogenic dysplasia: MR imaging of myocardial abnormalities. Radiology 207:743–751

    PubMed  CAS  Google Scholar 

  58. Zwanenburg JJ, Gotte MJ, Marcus JT, Kuijer JP, Knaapen P, Heethaar RM, van Rossum AC (2005) Propagation of onset and peak time of myocardial shortening in time of myocardial shortening in ischemic versus nonischemic cardiomyopathy: assessment by magnetic resonance imaging myocardial tagging. J Am Coll Cardiol 46:2215–2222

    PubMed  Google Scholar 

Section 5.3.4

  1. Anderson LJ, Holden S, Davies B et al. (2001) Cardiovascular T 2-star (T 2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 22:2171–2179

    PubMed  CAS  Google Scholar 

  2. Brenner DA, Jain M, Pimentel DR, Wang B, Connors LH, Skinner M, Apstein CS, Liao R (2004) Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res 94:1008–1010

    PubMed  CAS  Google Scholar 

  3. Comenzo RL, Gertz MA (2002) Autologous stem cell transplantation for primary systemic amyloidosis. Blood 99:4276–4282

    PubMed  CAS  Google Scholar 

  4. Comenzo RL, Vosburgh E, Falk RH, Sanchorawala V, Reisinger J, Dubrey S, Dember LM, Berk JL, Akpek G, LaValley M, O’Hara C, Arkin CF, Wright DG, Skinner M (1998) Dose-intensive melphalan with blood stem-cell support for the treatment of AL (amyloid light-chain) amyloidosis: survival and responses in 25 patients. Blood 91:3662–3670

    PubMed  CAS  Google Scholar 

  5. Dubrey SW, Cha K, Skinner M, LaValley M, Falk RH (1997) Familial and primary (AL) cardiac amyloidosis: echocardiographically similar diseases with distinctly different clinical outcomes. Heart 78:74–82

    PubMed  CAS  Google Scholar 

  6. Gertz MA, Lacy MQ, Gastineau DA, Inwards DJ, Chen MG, Tefferi A, Kyle RA, Litzow MR (2000) Blood stem cell transplantation as therapy for primary systemic amyloidosis (AL). Bone Marrow Transplant 26:963–969

    PubMed  CAS  Google Scholar 

  7. Gertz MA, Rajkumar SV (2002) Primary systemic amyloidosis. Curr Treat Options Oncol. 3:261–271

    PubMed  Google Scholar 

  8. Gillmore JD, Davies J, Iqbal A, Madhoo S, Russell NH, Hawkins PN (2002) Allogeneic bone marrow transplantation for systemic AL amyloidosis. Br J Haematol 100:226 –228

    Google Scholar 

  9. Hausse AO, Aggoun Y, Bonnet D et al. (2002) Idebenone and reduced cardiac hypertrophy in Friedreich’s Ataxia. Heart 87:346–349

    PubMed  CAS  Google Scholar 

  10. Huong DL, Wechsler B, Papo T et al. (1997) Endomyocardial fibrosis in Behçet’s disease. Ann Rheum Dis 56:205–208

    PubMed  CAS  Google Scholar 

  11. Jacobson DR, Pastore RD, Yaghoubian R, Kane I, Gallo G, Buck FS, Buxbaum JN (1997) Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in black Americans. N Engl J Med 336:466–473

    PubMed  CAS  Google Scholar 

  12. Kucuk NO, Aras G, Sipahi T et al. (1999) Evaluation of cardiac functions in patients with thalassemia major. Ann Nucl Med 13:175–179

    PubMed  CAS  Google Scholar 

  13. Lachmann HJ, Booth DR, Booth SE, Bybee A, Gilbertson JA, Gillmore JD, Pepys MB, Hawkins PN (2002) Misdiagnosis of hereditary amyloidosis as AL (primary) amyloidosis. N Engl J Med 346:1786–1817

    PubMed  CAS  Google Scholar 

  14. Liu P, Olivieri N (1994) Iron overload cardiomyopathies: new insights into an old disease. Cardiovasc Drugs Ther 198:101–110

    Google Scholar 

  15. Maceira AM, Joshi J, Prasad SK, Moon JC, Perugini E, Harding I, Sheppard MN, Poole-Wilson PA, Hawkins PN, Pennell DJ (2005) Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111:186–193

    PubMed  Google Scholar 

  16. Matsuki M, Matsuo M (2000) MR findings of myocardial sarcoidosis. Clin Radiol 55:323–325

    PubMed  CAS  Google Scholar 

  17. Moon JCC, McKenny WJ, Mc Crohon JA et al. (2003a) Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol 41:1561–1567

    PubMed  Google Scholar 

  18. Moon JCC, Mundy HR, Lee PJ, Mohiaddin RH, Pennell DJ (2003b) Myocardial fibrosis in glycogen storage disease type III. Circulation 107:47

    Google Scholar 

  19. Moreau P, Leblond V, Bourquelot P, Facon T, Huynh A, Caillot D, Hermine O, Attal M, Hamidou M, Nedellec G, Ferrant A, Audhuy B, Bataille R, Milpied N, Harousseau JL (1998) Prognostic factors for survival and response after high-dose therapy and autologous stem cell transplantation in systemic AL amyloidosis: a report on 21 patients. Br J Haematol 101:766–769

    PubMed  CAS  Google Scholar 

  20. Parrillo JE (1990) Heart disease and the eosinopil. N Engl J Med 323:1560–1561

    PubMed  CAS  Google Scholar 

  21. Puille M, Altland K, Linke RP, Steen-Muller MK, Kiett R, Steiner D, Bauer R (2002) 99mTc-DPD scintigraphy in transthyretin-related familial amyloidotic polyneuropathy. Eur J Nucl Med Mol Imaging 29:376–379

    PubMed  CAS  Google Scholar 

  22. Richardson P, McKenna W, Bristow M et al. (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies. Circulation 93:841–842

    PubMed  CAS  Google Scholar 

  23. Sharma OP (2003) Diagnosis of cardiac sarcoidosis. An imperfect science, a hesitant art. Chest 123:18–19

    PubMed  Google Scholar 

  24. Shimada T, Shimada K, Sakane T et al. (2001) Diagnosis of cardiac sarcoidosis and evaluation of the effects of steroid therapy by gadolinium-DTPA-enhanced magnetic resonance imaging. Am J Med 110:510–527

    Google Scholar 

  25. Silverman KJ, Hutchins GM, Bulkley BH (1978) Cardiac sarcoid: a clinicopathologic study of 84 unselected patients with systemic sarcoidosis. Circulation 58:1204–1211

    PubMed  CAS  Google Scholar 

  26. Vignaux O, Dhote R, Duboc D et al. (2002) Detection of myocardial involvement in patients with sarcoidosis applying T 2-weighted, contrast-enhanced, and cine magnetic resonance imaging : initial results of a prospective study. J Comput Assist Tomogr 26:762–767

    PubMed  Google Scholar 

  27. Vignaux O, Dhote R, Blance P et al. (2004) Myocardial MRI in sarcoidosis: 3-year follow-up and evaluation of the effects of steroid therapy. J Cardiovasc Magn Reson 6(Abstract):44

    Google Scholar 

  28. Vignaux O, Dhote R, Blanche P et al. (2002) Clinical significance of myocardial magnetic resonance abnormalities in patients with sarcoidosis. A 1-year follow-up study. Chest 122:1895–1901

    PubMed  Google Scholar 

  29. Virmani R, Bures JC, Roberts WC (1980) Cardiac sarcoidosis: a major cause of sudden death in young individuals. Chest 77:423–428

    PubMed  CAS  Google Scholar 

  30. Vogel M, Anderson LJ, Holden S, Deanfield JE, Pennell DJ, Walker JM (2003) Tissue Doppler echocardiography in patients with thalassaemia detects early myocardial dysfunction related to myocardial iron overload. Eur Heart J 24:113–119

    PubMed  CAS  Google Scholar 

  31. Weller PF, Bubley GJ (1994) The idopatic hypereosinopilic syndrome. Blood 83:2759–2779

    PubMed  CAS  Google Scholar 

  32. Westwood MA, Anderson LJ, Firmin DN et al. (2003a) A single breath-hold multiecho T 2* magnetic resonance technique for diagnosis of myocardial iron overload. J Magn Reson Imaging 18:33–39

    PubMed  Google Scholar 

  33. Westwood MA, Anderson LJ, Firmin DN et al. (2003b) Interscanner reproducibility of cardiovascular magnetic resonance in the early diagnosis of myocardial iron overload. J Magn Reson Imaging 18:616–620

    PubMed  Google Scholar 

  34. Westwood MA, Wonke B, Maceira AM et al. (2005) Left ventricular diastolic function compared with T 2* cardiovascular magnetic resonance for early detection of myocardial iron overload in thalassemia major. J Magn Reson Imaging 22:229–232

    PubMed  Google Scholar 

  35. Yamagishi H, Shirai N, Takagi M et al. (2003) Identification of cardiac sarcoidosis with 13N-NH3/18F-FDG PET. J Nucl Med 44:1030–1036

    PubMed  Google Scholar 

Section 5.3.5

  1. Aurigemma G, Reichek N, Schiebler M, Axel L (1990) Evaluation of mitral regurgitation by cine magnetic resonance imaging. Am J Cardiol 66:621–625

    PubMed  CAS  Google Scholar 

  2. Bogren HG, Buonocore MH (1994) Blood flow measurements in the aorta and major arteries with MR velocity mapping. J Magn Reson Imaging 4:119–130

    PubMed  CAS  Google Scholar 

  3. Bonow RO, Cheitlin MD, Crawfold MH, Douglas PS (2005) Task Force 3: valvular heart disease. JACC 45:1334–1340

    PubMed  Google Scholar 

  4. Caputo GR, Kondo C, Masui T et al. (1991) Right and left lung perfusion: in vitro and in vivo validation with oblique-angle, velocity-encoded cine MR imaging. Radiology 180:693–698

    PubMed  CAS  Google Scholar 

  5. Carabello BA, Crawford FA (1997a) Valvular heart disease. N Engl J Med 337:332–341

    Google Scholar 

  6. Carabello BA, Crawford FA (1997b) Valvular heart disease. N Engl J Med 307:1362–1367

    Google Scholar 

  7. Carroll JD (1993) Cardiac catheterisation and other imaging modalities in the evaluation of valvular heart disease. Curr Opin Cardiol 8:211–215

    PubMed  CAS  Google Scholar 

  8. Caruthers, SD, Lin SJ, Brown P, Watkins MP, Williams TA, Lehr KA, AND, Wickline SA (2003) Practical value of cardiac magnetic resonance imaging for clinical quantification of aortic valve stenosis comparison with echocardiography. Circulation 108:2236–2243

    PubMed  Google Scholar 

  9. Debl K, Djavidani B, Seitz J, Nitz W, Schmid FX, Muders F, Buchner S, Feuerbach. Riegger G, Luchner G (2005) Planimetry of aortic valve area in aortic stenosis by magnetic resonance imaging. Invest Radiol 40:631–636

    PubMed  Google Scholar 

  10. Didier D, Ratib O, Friedli B et al. (1993) Cine gradient-echo MR imaging in the evaluation of cardiovascular diseases. Radiographics 13:561–573

    PubMed  CAS  Google Scholar 

  11. Didier D, Ratib O, Lerch R, Friedli B (2000) Detection and quantification of valvular heart disease with dynamic cardiac MR imaging. Radiographics 20:1279–1299

    PubMed  CAS  Google Scholar 

  12. Duerinckx AJ, Higgins CB (1994) Valvular heart disease. Radiol Clin North Am 32:613–630

    PubMed  CAS  Google Scholar 

  13. Fujita N, Chazouilleres AF, Hartiala JJ et al. (1994) Quantification of mitral regurgitation by velocityencoded cine magnetic resonance imaging. J Am Coll Cardiol 23:951–958

    PubMed  CAS  Google Scholar 

  14. Gorlin R, Gorlin SG (1951) Hydraulic formula for calculation of the area of the stenotic mitral valve, other valves and central circulatory shunts. Am Heart J 1951, 41:1–29

    CAS  Google Scholar 

  15. Higgins CB, Sakuma H (1996) Heart disease: functional evaluation with MR imaging. Radiology 199:307–315

    PubMed  CAS  Google Scholar 

  16. Honda N, Machida K, Hashimoto M et al. (1993) Aortic regurgitation: quantitation with MR imaging velocity mapping. Radiology 186:189–194

    PubMed  CAS  Google Scholar 

  17. Hundley WG, Li HF, Willard JE et al. (1995) Magnetic resonance imaging assessment of the severity of mitral regurgitation: comparison with invasive techniques. Circulation 92:1151–1158

    PubMed  CAS  Google Scholar 

  18. John AS, Dill T, Brandt RR, Rau M, Ricken W, Bachmann G, Hamm CW (2003) Magnetic resonance to assess the aortic valve area in aortic stenosis: how does it compare to current diagnostic standards? J Am Coll Cardiol 62:519–526

    Google Scholar 

  19. Kondo C, Caputo GR, Semelka R et al. (1991) Right and left ventricular stroke volume measurements with velocity encoded cine NMR imaging: in vitro and in vivo evaluation. AJR Am J Roentgenol 157:9–16

    PubMed  CAS  Google Scholar 

  20. Kupfahl C, Honold M, Meinhardt G, Vogelsberg H, Wagner A, Mahrholdt H, Sechtem U (2004) Evaluation of aortic stenosis by cardiovascular magnetic resonance imaging: comparison with established routine clinical techniques. Heart 90:893–901

    PubMed  CAS  Google Scholar 

  21. Manning WJ, Silverman DI, Gordon SP, Krumholz HM, Douglas PS (1993) Cardioversion from atrial fibrillation without prolonged anticoagulation with use of transesophageal echocardiography to exclude the presence of atrial thrombi. N Engl J Med 328:750–755

    PubMed  CAS  Google Scholar 

  22. Miller S, Simonetti OP, Carr J, Kramer U, Finn JP (2002) MR Imaging of the heart with cine true fast imaging with steady-state precession: influence of spatial and temporal resolutions on left ventricular functional parameters. Radiology 223:263–269

    PubMed  Google Scholar 

  23. Mohiaddin RH, Pennell DJ (1998) MR blood flow measurement: clinical application in the heart and circulation. Cardiol Clin 16:161–187

    PubMed  CAS  Google Scholar 

  24. Mostbeck GH, Caputo GR, Higgins CB (1992) MR measurements of blood flow in the cardiovascular system. AJR Am J Roentgenol 159:453–461

    PubMed  CAS  Google Scholar 

  25. Nayler GL, Firmin DN, Longmore DB (1986) Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 10:715–722

    PubMed  CAS  Google Scholar 

  26. Nishimura T, Yamada N, Itoh A, Miyatake K (1989) Cine MR imaging in mitral regurgitation: comparison with color Doppler flow imaging. AJR Am J Roentgenol 153:721–724

    PubMed  CAS  Google Scholar 

  27. Pflugfelder PW, Landzberg JS, Cassidy MM et al. (1989) Comparison of cine MR imaging with Doppler echocardiography for the evaluation of aortic regurgitation. AJR Am J Roentgenol 152:729–735

    PubMed  CAS  Google Scholar 

  28. Rebergen SA, van der Wall EE, Doornbos J et al. (1993) Magnetic resonance measurements of velocity and flow: technique, validation and cardiovascular applications. Am Heart J 126:1439–1456

    PubMed  CAS  Google Scholar 

  29. Sechtem U, Pflugfelder PW, White RD et al. (1987) Cine MR imaging: potential for the evaluation of cardiovascular function. AJR Am J Roentgenol 148:239–246

    PubMed  CAS  Google Scholar 

  30. Sechtem U, Pflugfelder PW, Cassidy MM et al. (1988) Mitral or aortic regurgitation: quantification of regurgitant volumes with cine MR imaging. Radiology 167:425–430

    PubMed  CAS  Google Scholar 

  31. Smith MD, Kie GY (1998) Current echocardiography-Doppler approaches to the quantification of valvular regurgitation. Cardiology 6:168–181

    Google Scholar 

  32. Szolar DH, Sakuma H, Higgins CB (1996) Cardiovascular applications of magnetic resonance flow and velocity measurements. J Magn Reson Imaging 1:78–89

    Google Scholar 

  33. Utz JA, Herfkens RJ, Heinsimer JA, Shimakawa A, Glo­ver G, Pelc N (1998) Valvular regurgitation: dynamic MR imaging. Radiology 168:91–94

    Google Scholar 

  34. Wagner S, Aufferman W, Buser P et al. (1989) Diagnostic accuracy and estimation of the severity of valvular regurgitation from the signal void on cine magnetic resonance images. Am Heart J 118:760–767

    PubMed  CAS  Google Scholar 

  35. Wintersperger BJ, Nikoalou K, Dietrich O, Rieber J, Nittka M, Reiser MF, Schönberg SO (2003) Single breath-hold real-time cine MR imaging: improved temporal resolution using a generalized autocalibrating partially parallel acquisition (GRAPPA) algorithm. Eur Radiol 13:1931–1936

    PubMed  Google Scholar 

  36. Wyttenbach R, Bremerich J, Saeed M, Higgins CB (1998) Integrated MR imaging approach to valvular heart disease. Cardiol Clin 16:277–294

    PubMed  CAS  Google Scholar 

Section 5.3.6

  1. Breen JF (2001) Imaging of the pericardium. J Thorac Imaging 16:47–54

    PubMed  CAS  Google Scholar 

  2. Bull RK, Edwards PD, Dixon AK (1998) CT dimensions of the normal pericardium. Br J Radiol 71:923–925

    PubMed  CAS  Google Scholar 

  3. Cameron J, Oesterle SN, Baldwin JC, Hancock EW (1987) The etiologic spectrum of constrictive pericarditis. Am Heart J 113:354–360

    PubMed  CAS  Google Scholar 

  4. Edwards ED (2001) Applied anatomy of the heart. In: Giulaini ER, Fuster V (eds) Cardiology: fundamentals and practice, 2nd edn. Mosby-Year Book, St. Louis, pp 47–51

    Google Scholar 

  5. Francone M, Dymarkowski S, Kalantzi M, Bogaert J (2005) Real-time cine MRI of ventricular septal motion: a novel approach to assess ventricular coupling. J Magn Reson Imaging 21:305–309

    PubMed  Google Scholar 

  6. Frank H, Globits S (1999) Magnetic resonance imaging evaluation of myocardial and pericardial disease. J Magn Reson Imaging 10:617–626

    PubMed  CAS  Google Scholar 

  7. Goldstein JA (1996) Management of patients with pericardial diseases. Medical manage­ment of heart disease: the clinician’s consultant. Dekker, New York, pp 267–284

    Google Scholar 

  8. Hancock EW (1990) Neoplastic pericardial disease. Cardiol Clin 8:673–682

    PubMed  CAS  Google Scholar 

  9. Ling LH, Oh JK, Tei C et al. (1997) Pericardial thickness measured with transesophageal echocardiography: feasibility and potential clinical usefulness. J Am Coll Cardiol 29:1317–1323

    PubMed  CAS  Google Scholar 

  10. Mulvagh SL, Rokey R, Vick GW III, Johnston DL (1989) Usefulness of nuclear magnetic resonance imaging for evaluation of pericardial effusions, and comparison with two-dimensional echocardiography. Am J Cardiol 64:1002–1009

    PubMed  CAS  Google Scholar 

  11. Spodick DH (2003) Acute cardiac tamponade. N Engl J Med 349:684–690

    PubMed  Google Scholar 

  12. Spodick DH (2001) Pericardial diseases. In: Braunwald E, Zipes DP, Libby P (eds) Heart disease: a textbook of cardiovascular medicine, vol. 2, 6th edn. Saunders, Philadelphia, pp 1823–1876

    Google Scholar 

  13. Wang ZJ, Reddy GP, Gotway MB, Yeh BM, Hetts SW, Higgins CB (2003) CT and MR imaging of pericardial disease. Radiographics 23(Spec no.):S167–S180

    PubMed  Google Scholar 

  14. Yousem D, Traill TT, Wheeler PS, Fishman EK (1987) Illustrative cases in pericardial effusion misdetection: correlation of echocardiography and CT. Cardiovasc Intervent Radiol 10:162–167

    PubMed  CAS  Google Scholar 

Section 5.3.7

  1. Achenbach S, Ropers D, Kuettner A, Flohr T, Ohnesorge B, Bruder H, Theessen H, Karakaya M, Daniel WG, Bautz W, Kalender WA, Anders K (2006) Contrast-enhanced coronary artery visualization by dual-source computed tomography-Initial experience. Eur J Radiol 57:331–335

    PubMed  Google Scholar 

  2. Anders K, Baum U, Schmid M, Ropers D, Schmid A, Pohle K, Daniel WG, Bautz W, Achenbach S (2006) Coronary artery bypass graft (CABG) patency: Assessment with high-resolution submillimeter 16-slice multidetector-row computed tomography (MDCT) versus coronary angiography. Eur J Radiol 57:336–444

    PubMed  Google Scholar 

  3. Axel L, Dougherty L (1989) Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology 172:349–350

    PubMed  CAS  Google Scholar 

  4. Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U (1995) Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with 18Ffluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 91:1006–1015

    PubMed  CAS  Google Scholar 

  5. Baer FM, Voth E, Deutsch HJ, Schneider CA, Horst M, de Vivie ER, Schicha H, Erdmann E, Sechtem U (1996) Predictive value of low dose dobutamine transesophageal echocardiography and fluorine-18 fluorodeoxyglucose positron emission tomography for recovery of regional left ventricular function after successful revascularization. J Am Coll Cardiol 28:60–69

    PubMed  CAS  Google Scholar 

  6. Barkhausen J, Hunold P, Waltering KU (2004a) MRI in coronary artery disease. Eur Radiol 14:2155–2162

    PubMed  Google Scholar 

  7. Barkhausen J, Hunold P, Jochims M, Debatin JF (2004b) Imaging of myocardial perfusion with magnetic resonance. J Magn Reson Imaging 19:750–757

    PubMed  Google Scholar 

  8. Bi X, Park J, Larson AC, Zhang Q, Simonetti O, Li D (2005) Contrast-enhanced 4D radial coronary artery imaging at 3.0 T within a single breath-hold. Magn Reson Med 54:470–475

    PubMed  Google Scholar 

  9. Bodi V, Sanchis J, Lopez-Lereu MP, Losada A, Nunez J, Pellicer M, Bertomeu V, Chorro FJ, Llacer A (2005) Usefulness of a comprehensive cardiovascular magnetic resonance imaging assessment for predicting recovery of left ventricular wall motion in the setting of myocardial stunning. J Am Coll Cardiol 46:1747–1752

    PubMed  Google Scholar 

  10. Bogaert J, Kuzo R, Dymarkowski S, Beckers R, Piessens J, Rademakers FE (2003) Coronary artery imaging with real-time navigator three-dimensional turbo-field-echo MR coronary angiography: initial experience. Radiology 226:707–716

    PubMed  Google Scholar 

  11. Bunce NH, Lorenz CH, John AS, Lesser JR, Mohiaddin RH, Pennell DJ (2003) Coronary artery bypass graft patency: assessment with true fast imaging with steady-state precession versus gadolinium-enhanced MR angiography. Radiology 227:440–446

    PubMed  Google Scholar 

  12. Casolo G, Del Meglio J, Rega L, Manta R, Margheri M, Villari N, Gensini G (2005) Detection and assessment of coronary artery anomalies by three-dimensional magnetic resonance coronary angiography. Int J Cardiol 103:317–322

    PubMed  Google Scholar 

  13. Chiu CW, So NM, Lam WW, Chan KY, Sanderson JE (2003) Combined first-pass perfusion and viability study at MR imaging in patients with non-ST segment-elevation acute coronary syndromes: feasibility study. Radiology 226:717–722

    PubMed  Google Scholar 

  14. Constantine G, Shan K, Flamm SD, Sivananthan MU (2004) Role of MRI in clinical cardiology. Lancet 363:2162-2171

    PubMed  Google Scholar 

  15. Danias PG, Roussakis A, Ioannidis JP (2004) Diagnostic performance of coronary magnetic resonance angiography as compared against conventional X-ray angiography: a meta-analysis. J Am Coll Cardiol 44:1867–1876

    PubMed  Google Scholar 

  16. Engelmann MG, Knez A, von Smekal A, Wintersperger BJ, Huehns TY, Hofling B, Reiser MF, Steinbeck G (2000) Non-invasive coronary bypass graft imaging after multivessel revascularisation. Int J Cardiol 76:65–74

    PubMed  CAS  Google Scholar 

  17. Fenchel M, Helber U, Kramer U, Stauder NI, Fra­now A, Claussen CD, Miller S (2005) Detection of regional myocardial perfusion deficit using rest and stress perfusion MRI: a feasibility study. AJR Am J Roentgenol 185:627–635

    PubMed  Google Scholar 

  18. Fitzgibbon GM, Kafka HP, Leach AJ, Keon WJ, Hooper GD, Burton JR (1996) Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol 28:616–626

    PubMed  CAS  Google Scholar 

  19. Foo TK, Ho VB, Saranathan M, Cheng LQ, Sakuma H, Kraitchman DL, Wu KC, Bluemke DA (2005) Feasibility of integrating high-spatial-resolution 3D breath-hold coronary MR angiography with myocardial perfusion and viability examinations. Radiology 235:1025–1030

    PubMed  Google Scholar 

  20. Galjee MA, van Rossum AC, Doesburg T, Van Eenige MJ, Visser CA (1996) Value of magnetic resonance imaging in assessing patency and function of coronary artery bypass grafts. An angiographically controlled study. Circulation 93:660–666

    PubMed  CAS  Google Scholar 

  21. Geuns RJ van, de Bruin HG, Rensing BJ, Wielopolski PA, Hulshoff MD, van Ooijen PM, Oudkerk M (1999) Magnetic resonance imaging of the coronary arteries: clinical results from three dimensional evaluation of a respiratory gated technique. Heart 82:515–519

    PubMed  Google Scholar 

  22. Geuns RJ van, Wielopolski PA, de Bruin HG, Rensing BJ, Hulshoff M, van Ooijen PM, de Feyter PJ, Oudkerk M (2000) MR coronary angiography with breath-hold targeted volumes: preliminary clinical results. Radiology 217:270–277

    PubMed  Google Scholar 

  23. Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, Pennell DJ (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 90:29–34

    PubMed  Google Scholar 

  24. Herborn CU, Schmidt M, Bruder O, Nagel E, Shamsi K, Barkhausen J (2004) MR Coronary angiography with SH L 643 A: initial experience in patients with coronary artery disease. Radiology 233:567–573

    PubMed  Google Scholar 

  25. Higgins CB, Herfkens R, Lipton MJ, Sievers R, Sheldon P, Kaufman L, Crooks LE (1983) Nuclear magnetic resonance imaging of acute myocardial infarction in dogs: alterations in magnetic relaxation times. Am J Cardiol 52:184–188

    PubMed  CAS  Google Scholar 

  26. Hsu LY, Rhoads KL, Holly JE, Kellman P, Aletras AH, Arai AE (2006) Quantitative myocardial perfusion analysis with a dual-bolus contrast-enhanced first-pass MRI technique in humans. J Magn Reson Imaging 23:315–322

    PubMed  Google Scholar 

  27. Huber AM, Schönberg SO, Hayes C, Spannagl B, Engelmann MG, Franz WM, Reiser MF (2005) Phase-sensitive inversion-recovery MR imaging in the detection of myocardial infarction. Radiology 237:854–860

    PubMed  Google Scholar 

  28. Huber A, Bauner K, Wintersperger BJ, Reeder SB, Stadie F, Mueller E, Schmidt M, Winnik E, Reiser MF, Schönberg SO (2006) Phase-sensitive inversion recovery (PSIR) single-shot TrueFISP for assessment of myocardial infarction at 3 Tesla. Invest Radiol 41:148–153

    PubMed  Google Scholar 

  29. Ikonen AE, Manninen HI, Vainio P, Hirvonen TP, Vanninen RL, Matsi PJ, Soimakallio S, Hartikainen JE (2003) Three-dimensional respiratory-gated coronary MR angiography with reference to X-ray coronary angiography. Acta Radiol 44:583–589

    PubMed  CAS  Google Scholar 

  30. Jahnke C, Paetsch I, Schnackenburg B, Bornstedt A, Gebker R, Fleck E, Nagel E (2004) Coronary MR angiography with steady-state free precession: individually adapted breath-hold technique versus free-breathing technique. Radiology 232:669–676

    PubMed  Google Scholar 

  31. Johnson T, Hahn D, Sandstede J (2004) [Quantitative analysis of left ventricular wall motion with MRI tagging]. Radiologe 44:158–163

    PubMed  CAS  Google Scholar 

  32. Kessler W, Achenbach S, Moshage W, Zink D, Kroeker R, Nitz W, Laub G, Bachmann K (1997) Usefulness of respiratory gated magnetic resonance coronary angiography in assessing narrowings > or = 50% in diameter in native coronary arteries and in aortocoronary bypass conduits. Am J Cardiol 80:989–993

    PubMed  CAS  Google Scholar 

  33. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    PubMed  CAS  Google Scholar 

  34. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    PubMed  CAS  Google Scholar 

  35. Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, Langerak SE, Weber OM, Pedersen EM, Schmidt M, Botnar RM, Manning WJ (2001) Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 345:1863–1869

    PubMed  CAS  Google Scholar 

  36. Klein C, Nagel E, Schnackenburg B, Bornstedt A, Schalla S, Hoffmann V, Lehning A, Fleck E (2000) The intravascular contrast agent Clariscan (NC 100150 injection) for 3D MR coronary angiography in patients with coronary artery disease. MAGMA 11:65–67

    PubMed  CAS  Google Scholar 

  37. Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F, Schnackenburg B, Delius W, Mudra H, Wolfram D, Schwaiger M (2002) Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 105:162–167

    PubMed  Google Scholar 

  38. Kloner RA, Jennings RB (2001) Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 2. Circulation 104:3158–3167

    PubMed  CAS  Google Scholar 

  39. Kreitner KF, Ehrhard K, Kunz RP, Abegunewardene N, Oberholzer K, Horstick G, Hake U, Mildenberger P, Thelen M (2004) [Non-invasive assessment of coronary artery bypass grafts—an update]. RoFo 176:1079–1088

    PubMed  Google Scholar 

  40. Langerak SE, Vliegen HW, Jukema JW, Kunz P, Zwinderman AH, Lamb HJ, van der Wall EE, De Roos A (2003) Value of magnetic resonance imaging for the noninvasive detection of stenosis in coronary artery bypass grafts and recipient coronary arteries. Circulation 107:1502–1508

    PubMed  CAS  Google Scholar 

  41. Lauerma K, Niemi P, Hanninen H, Janatuinen T, Voipio-Pulkki LM, Knuuti J, Toivonen L, Makela T, Makijarvi MA, Aronen HJ (2000) Multimodality MR imaging assessment of myocardial viability: combination of first-pass and late contrast enhancement to wall motion dynamics and comparison with FDG PET-initial experience. Radiology 217:729–736

    PubMed  CAS  Google Scholar 

  42. Maier SE, Fischer SE, McKinnon GC, Hess OM, Krayenbuehl HP, Boesiger P (1992) Evaluation of left ventricular segmental wall motion in hypertrophic cardiomyopathy with myocardial tagging. Circulation 86:1919–1928

    PubMed  CAS  Google Scholar 

  43. Manning WJ, Atkinson DJ, Grossman W, Paulin S, Edelman RR (1991) First-pass nuclear magnetic resonance imaging studies using gadolinium-DTPA in patients with coronary artery disease. J Am Coll Cardiol 18:959–965

    PubMed  CAS  Google Scholar 

  44. Manning WJ, Li W, Edelman RR (1993) A preliminary report comparing magnetic resonance coronary angiography with conventional angiography [Comments]. N Engl J Med 328:828–832

    PubMed  CAS  Google Scholar 

  45. Molinari G, Sardanelli F, Zandrino F, Balbi M, Masperone MA (2000) Value of navigator echo magnetic resonance angiography in detecting occlusion/patency of arterial and venous, single and sequential coronary bypass grafts. Int J Card Imaging 16:149–160

    PubMed  CAS  Google Scholar 

  46. Moran GR, Thornhill RE, Sykes J, Prato FS (2002) Myocardial viability imaging using Gd-DTPA: physiological modeling of infarcted myocardium, and impact on injection strategy and imaging time. Magn Reson Med 48:791–800

    PubMed  CAS  Google Scholar 

  47. Nikolaou K, Flohr T, Knez A, Rist C, Wintersperger BJ, Johnson T, Reiser MF, Becker CR (2004) Advances in cardiac CT imaging: 64-slice scanner. Int J Cardiovasc Imaging 20:535–540

    PubMed  Google Scholar 

  48. Nikolaou K, Huber A, Knez A, Scheidler J, Petsch R, Reiser M (2001) Navigator echo-based respiratory gating for 3D-MR coronary angiography: Reduction of scan time using a slice-interpolation technique. J Comput Assist Tomogr 25:378–387

    PubMed  CAS  Google Scholar 

  49. Nikolaou K, Poon M, Sirol M, Becker CR, Fayad ZA (2003) Complementary results of computed tomography and magnetic resonance imaging of the heart and coronary arteries: a review and future outlook. Cardiol Clin 21:639–655

    PubMed  Google Scholar 

  50. Oshinski JN, Yang Z, Jones JR, Mata JF, French BA (2001) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 104:2838–2842

    PubMed  CAS  Google Scholar 

  51. Paetsch I, Jahnke C, Wahl A, Gebker R, Neuss M, Fleck E, Nagel E (2004) Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 110:835–842

    PubMed  CAS  Google Scholar 

  52. Paetsch I, Foll D, Kaluza A, Luechinger R, Stuber M, Bornstedt A, Wahl A, Fleck E, Nagel E (2005) Magnetic resonance stress tagging in ischemic heart disease. Am J Physiol 288:H2708–H2714

    CAS  Google Scholar 

  53. Park J, Larson AC, Zhang Q, Simonetti O, Li D (2005) High-resolution steady-state free precession coronary magnetic resonance angiography within a breath-hold: Parallel imaging with extended cardiac data acquisition. Magn Reson Med 54:1100–1106

    PubMed  Google Scholar 

  54. Pennell DJ, Bogren HG, Keegan J, Firmin DN, Underwood SR (1996) Assessment of coronary artery stenosis by magnetic resonance imaging. Heart 75:127–133

    PubMed  CAS  Google Scholar 

  55. Plein S, Ridgway JP, Jones TR, Bloomer TN, Sivananthan MU (2002) Coronary artery disease: assessment with a comprehensive MR imaging protocol—initial results. Radiology 225:300–307

    PubMed  Google Scholar 

  56. Plein S, Radjenovic A, Ridgway JP, Barmby D, Greenwood JP, Ball SG, Sivananthan MU (2005) Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography. Radiology 235:423–430

    PubMed  Google Scholar 

  57. Poon M, Fuster V, Fayad Z (2002) Cardiac magnetic resonance imaging: a “one-stop-shop” evaluation of myocardial dysfunction. Curr Opin Cardiol 17:663–670

    PubMed  Google Scholar 

  58. Post JC, van Rossum AC, Hofman MBM, de Cock CC, Valk J, Visser CA (1997) Clinical utility of two-dimensional magnetic resonance angiography in detecting coronary artery disease. Eur Heart J 18:426–433

    PubMed  CAS  Google Scholar 

  59. Reeder SB, Du YP, Lima JA, Bluemke DA (2001) Advanced cardiac MR imaging of ischemic heart disease. Radiographics 21:1047–1074

    PubMed  CAS  Google Scholar 

  60. Regenfus M, Ropers D, Achenbach S, Kessler W, Laub G, Daniel WG, Moshage W (2000) Noninvasive detection of coronary artery stenosis using contrast-enhanced three-dimensional breath-hold magnetic resonance coronary angiography. J Am Coll Cardiol 36:44–50

    PubMed  CAS  Google Scholar 

  61. Regenfus M, Ropers D, Achenbach S, Schlundt C, Kessler W, Laub G, Moshage W, Daniel WG (2002) Comparison of contrast-enhanced breath-hold and free-breathing respiratory-gated imaging in three-dimensional magnetic resonance coronary angiography. Am J Cardiol 90:725–730

    PubMed  Google Scholar 

  62. Rubinstein RI, Askenase AD, Thickman D, Feldman MS, Agarwal JB, Helfant RH (1987) Magnetic resonance imaging to evaluate patency of aortocoronary bypass grafts. Circulation 76:786–791

    PubMed  CAS  Google Scholar 

  63. Sakuma H, Ichikawa Y, Suzawa N, Hirano T, Makino K, Koyama N, Van Cauteren M, Takeda K (2005a) Assessment of coronary arteries with total study time of less than 30 min by using whole-heart coronary MR angiography. Radiology 237:316–321

    PubMed  Google Scholar 

  64. Sakuma H, Suzawa N, Ichikawa Y, Makino K, Hirano T, Kitagawa K, Takeda K (2005b) Diagnostic accuracy of stress first-pass contrast-enhanced myocardial perfusion MRI compared with stress myocardial perfusion scintigraphy. AJR Am J Roentgenol 185:95–102

    PubMed  Google Scholar 

  65. Sandstede J, Pabst T, Beer M, Geis N, Kenn W, Neubauer S, Hahn D (1999) Three-dimensional MR coronary angiography using the navigator technique compared with conventional coronary angiography. Am J Roentgenol 172:135–139

    CAS  Google Scholar 

  66. Sandstede J, Machann H, Machann W, Beer M, Johnson T, Harre K, Pabst T, Kenn W, Hahn D (2002) [Interindividual-variability of the analysis of regional myocardial wall function after myocardial infarction and revascularization]. RoFo 174:1147–1153

    PubMed  CAS  Google Scholar 

  67. Sandstede JJ (2003) Assessment of myocardial viability by MR imaging. Eur Radiol 13:52–61

    PubMed  Google Scholar 

  68. Sardanelli F, Molinari G, Zandrino F, Balbi M (2000) Three-dimensional, navigator-echo MR coronary angiography in detecting stenoses of the major epicardial vessels, with conventional coronary angiography as the standard of reference. Radiology 214:808–814

    PubMed  CAS  Google Scholar 

  69. Schalla S, Klein C, Paetsch I, Lehmkuhl H, Bornstedt A, Schnackenburg B, Fleck E, Nagel E (2002) Real-time MR image acquisition during high-dose dobutamine hydrochloride stress for detecting left ventricular wall-motion abnormalities in patients with coronary arterial disease. Radiology 224:845–851

    PubMed  Google Scholar 

  70. Schuijf JD, Shaw LJ, Wijns W, Lamb HJ, Poldermans D, De Roos A, van der Wall EE, Bax JJ (2005) Cardiac imaging in coronary artery disease: differing modalities. Heart 91:1110–1117

    PubMed  CAS  Google Scholar 

  71. Sensky PR, Jivan A, Hudson NM, Keal RP, Morgan B, Tranter JL, de Bono D, Samani NJ, Cherryman GR (2000) Coronary artery disease: combined stress MR imaging protocol-one-stop evaluation of myocardial perfusion and function. Radiology 215:608–614

    PubMed  CAS  Google Scholar 

  72. Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM, Finn JP, Judd RM (2001) An Improved MR Imaging Technique for the Visualization of Myocardial Infarction. Radiology 218:215–223

    PubMed  CAS  Google Scholar 

  73. So NM, Lam WW, Li D, Chan AK, Sanderson JE, Metreweli C (2005) Magnetic resonance angiography of coronary arteries with a 3-dimensional magnetization-prepared true fast imaging with steady-state precession sequence compared with conventional coronary angiography. Am Heart J 150:530–535

    PubMed  Google Scholar 

  74. Sommer T, Hackenbroch M, Hofer U, Schmiedel A, Willinek WA, Flacke S, Gieseke J, Traber F, Fimmers R, Litt H, Schild H (2005) Coronary MR angiography at 3.0 T versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. Radiology 234:718–725

    PubMed  Google Scholar 

  75. Spuentrup E, Katoh M, Buecker A, Manning WJ, Schaeffter T, Nguyen TH, Kuhl HP, Stuber M, Botnar RM, Gunther RW (2004) Free-breathing 3D steady-state free precession coronary MR angiography with radial k-space sampling: comparison with Cartesian k-space sampling and Cartesian gradient-echo coronary MR angiography—pilot study. Radiology 231:581–586

    PubMed  Google Scholar 

  76. Stuber M, Botnar RM, Fischer SE, Lamerichs R, Smink J, Harvey P, Manning WJ (2002) Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magn Reson Med 48:425–429

    PubMed  Google Scholar 

  77. Thiele H, Plein S, Ridgway JP, Breeuwer M, Higgins D, Schuler G, Sivananthan M (2003) Effects of missing dynamic images on myocardial perfusion reserve index calculation: comparison between an every heartbeat and an alternate heartbeat acquisition. J Cardiovasc Magn Reson 5:343–352

    PubMed  Google Scholar 

  78. Vrachliotis TG, Bis KG, Aliabadi D, Shetty AN, Safian R, Simonetti O (1997) Contrast-enhanced breath-hold MR angiography for evaluating patency of coronary artery bypass grafts. AJR Am J Roentgenol 168:1073–1080

    PubMed  CAS  Google Scholar 

  79. Wahl A, Paetsch I, Roethemeyer S, Klein C, Fleck E, Nagel E (2004) High-dose dobutamine-atropine stress cardiovascular MR imaging after coronary revascularization in patients with wall motion abnormalities at rest. Radiology 233:210–216

    PubMed  Google Scholar 

  80. White RD, Pflugfelder PW, Lipton MJ, Higgins CB (1988) Coronary artery bypass grafts: evaluation of patency with cine MR imaging. AJR Am J Roentgenol 150:1271–1274

    PubMed  CAS  Google Scholar 

  81. Wintersperger BJ, Engelmann MG, von Smekal A, Knez A, Penzkofer HV, Hofling B, Laub G, Reiser MF (1998) Patency of coronary bypass grafts: assessment with breath-hold contrast- enhanced MR angiography—value of a non-electrocardiographically triggered technique. Radiology 208:345–351

    PubMed  CAS  Google Scholar 

  82. Wintersperger BJ, Penzkofer HV, Knez A, Weber J, Reiser MF (1999) Multislice MR perfusion imaging and regional myocardial function analysis: complimentary findings in chronic myocardial ischemia. Int J Card Imaging 15:425–434

    PubMed  CAS  Google Scholar 

  83. Wintersperger BJ, Penzkofer HV, Knez A, Huber A, Kerner M, Meininger M, Knesewitsch P, Scheidler J, Haberl R, Reiser M (2000) [Myocardial perfusion at rest and during stress. MR signal characteristics of persistent and reversible myocardial ischemia]. Radiologe 40:155–161

    PubMed  CAS  Google Scholar 

  84. Wittlinger T, Voigtlander T, Rohr M, Meyer J, Thelen M, Kreitner KF, Kalden P (2002) Magnetic resonance imaging of coronary artery occlusions in the navigator technique. Int J Cardiovasc Imaging 18:203–211

    PubMed  Google Scholar 

  85. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP (1988) Human heart: tagging with MR imaging–a method for noninvasive assessment of myocardial motion. Radiology 169:59–63

    PubMed  CAS  Google Scholar 

Section 5.3.8

  1. Abraham KP et al. (1990) Neoplasms metastatic to the heart: review of 3314 consecutive autopsies. Am J Cardiovasc Pathol 3:195–198

    PubMed  CAS  Google Scholar 

  2. Araoz PA et al. (1999) CT and MR imaging of primary cardiac malignancies. Radiographics 19:1421–1434

    PubMed  CAS  Google Scholar 

  3. Barkhausen J et al. (2002) Detection and characterization of intracardiac thrombi on MR imaging. AJR Am J Roentgenol 179:1539–1544

    PubMed  Google Scholar 

  4. Becker AE (2000) Primary heart tumors in the pediatric age group: a review of salient pathologic features relevant for clinicians. Pediatr Cardiol 21:317–323

    PubMed  CAS  Google Scholar 

  5. Braun S et al. (2005) Myocardial infarction as complication of left atrial myxoma. Int J Cardiol 101:115–121

    PubMed  CAS  Google Scholar 

  6. Brechtel K et al. (1999) Cardiac fibroma in an infant: magnetic resonance imaging characteristics. J Cardiovasc Magn Reson 1:159–161

    PubMed  CAS  Google Scholar 

  7. Burke AP, Virmani R (1993) Cardiac myxomas: a clinicopathologic study. Am J Clin Pathol 100:671–680

    PubMed  CAS  Google Scholar 

  8. Burke AP, Virmani R (1996) Tumors of the heart and great vessels. Armed Forces Institute of Pathology, Washington, D.C.

    Google Scholar 

  9. Burke AP et al. (1994) Cardiac fibroma: clinicopathologic correlates and surgical treatment. J Thorac Cardiovasc Surg 108:862–170

    PubMed  CAS  Google Scholar 

  10. Carney JA et al. (1985) The comlex of myxomas, spotty pigmentation and endocrine overactivity. Medicine 64:270–283

    PubMed  CAS  Google Scholar 

  11. Carney JA et al. (1986) Dominant inheritance of the complex of myxomas, spotty pigmentation, and endocrine overactivity. Mayo Clin Proc 61:165–172

    PubMed  CAS  Google Scholar 

  12. Cotton JL et al. (1991) Cardiac tumors and the nevoid basal cell carcinoma syndrome. Pediatrics 87:725–728

    PubMed  CAS  Google Scholar 

  13. Dichek DA et al. (1988) Angiosarcoma of the heart: three-year survival and follow-up by nuclear magnetic resonance imaging. Am Heart J 115:1323–1324

    PubMed  CAS  Google Scholar 

  14. Endo A et al. (1996) [Clinical incidence of primary cardiac tumors]. J Cardiol 28:227–34

    PubMed  CAS  Google Scholar 

  15. Feldman PS, Meyer MW (1976) Fibroelastic hamartoma (fibroma) of the heart. Cancer 38:314–323

    PubMed  CAS  Google Scholar 

  16. Fenoglio JJ Jr et al. (1976) Cardiac rhabdomyoma: a clinicopathologic and electron microscopic study. Am J Cardiol 38:241–251

    PubMed  Google Scholar 

  17. Freedom RM et al. (2000) Selected aspects of cardiac tumors in infancy and childhood. Pediatr Cardiol 2:299–316

    Google Scholar 

  18. Funari M et al. (1991) Cardiac tumors: assessment with Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:953–958

    PubMed  CAS  Google Scholar 

  19. Gomes AS et al. (1987) Cardiac tumors and thrombus: evaluation with MR imaging. AJR Am J Roentgenol 149:895–899

    PubMed  CAS  Google Scholar 

  20. Grande AM et al. (1993) Primary cardiac tumors. A clinical experience of 12 years. Tex Heart Inst J 20:223–230

    PubMed  CAS  Google Scholar 

  21. Grebenc ML et al. (2000) Primary cardiac and pericardial neoplasms: radiologic-pathologic correlation. Radiographics 20:1073–1103; quiz 1110–1111, 1112

    PubMed  CAS  Google Scholar 

  22. Hajar R et al. (1986) Embryonal botryoid rhabdomyosarcoma of the mitral valve. Am J Cardiol 57:376

    PubMed  CAS  Google Scholar 

  23. Hananouchi GI, Goff WB II (1990) Cardiac lipoma: six-year follow-up with MRI characteristics, and a review of the literature. Magn Reson Imaging 8:825–828

    PubMed  CAS  Google Scholar 

  24. Heyer CM et al. (2003) Lipomatous hypertrophy of the interatrial septum: a prospective study of incidence, imaging findings, and clinical symptoms. Chest 124:2068–2073

    PubMed  Google Scholar 

  25. Hoffmann U et al. (2003) Usefulness of magnetic resonance imaging of cardiac and paracardiac masses. Am J Cardiol 92:890–895

    PubMed  Google Scholar 

  26. Janigan DT et al. (1986) Cardiac angiosarcomas. A review and a case report. Cancer 57:852–859

    PubMed  CAS  Google Scholar 

  27. Kaminaga T et al. (2003) Role of magnetic resonance imaging for evaluation of tumors in the cardiac region. Eur Radiol 13 Suppl 6:L1–L10

    Google Scholar 

  28. Klatt EC, Heitz DR (1990) Cardiac metastases. Cancer 65:1456–1459

    PubMed  CAS  Google Scholar 

  29. Lam KY et al. (1993) Tumors of the heart. A 20-year experience with a review of 12,485 consecutive autopsies. Arch Pathol Lab Med 117:1027–1031

    PubMed  CAS  Google Scholar 

  30. Luna A et al. (2005) Evaluation of cardiac tumors with magnetic resonance imaging. Eur Radiol 15:1446–1455

    PubMed  Google Scholar 

  31. Meng Q et al. (2002) Echocardiographic and pathologic characteristics of primary cardiac tumors: a study of 149 cases. Int J Cardiol 84:69–75

    PubMed  Google Scholar 

  32. O’Connor S et al. (2006) Lipomatous hypertrophy of the interatrial septum: an overview. Arch Pathol Lab Med 130:397–379

    PubMed  Google Scholar 

  33. Paydarfar D et al. (2001) In vivo magnetic resonance imaging and surgical histopathology of intracardiac masses: distinct features of subacute thrombi. Cardiology 95:40–47

    PubMed  CAS  Google Scholar 

  34. Perchinsky MJ et al. (1997) Primary cardiac tumors: forty years’ experience with 71 patients. Cancer 79:1809–1815

    PubMed  CAS  Google Scholar 

  35. Sparrow PJ et al. (2005) MR imaging of cardiac tumors. Radiographics 25:1255–1276

    PubMed  Google Scholar 

  36. Tahernia AC et al. (1990) Intracardiac fibroma in an asymptomatic infant. Clin Cardiol 13:506–512

    PubMed  CAS  Google Scholar 

  37. Tazelaar HD et al. (1992) Pathology of surgically excised primary cardiac tumors. Mayo Clin Proc 67:957–965

    PubMed  CAS  Google Scholar 

  38. Watanabe AT et al. (1989) Magnetic resonance imaging of cardiac sarcomas. J Thorac Imaging 4:90–92

    PubMed  CAS  Google Scholar 

  39. Winkler M, Higgins CB (1987) Suspected intracardiac masses: evaluation with MR imaging. Radiology 165:117–122

    PubMed  CAS  Google Scholar 

Section 5.4

  1. Abolmaali ND, Hietschold V, Appold S, Ebert W, Vogl TJ (2002) Gadomer-17-enhanced 3D navigator-echo MR angiography of the pulmonary arteries in pigs. Eur Radiol 12:692–697

    PubMed  Google Scholar 

  2. Adams WM, Laitt RD, Jackson A (2000) The role of MR angiography in the pretreatment assessment of intracranial aneurysms: a comparative study. AJNR Am J Neuroradiol 21:1618–1628

    PubMed  CAS  Google Scholar 

  3. Amann M, Bock M, Floemer F, Schönberg SO, Schad LR (2002) Three-dimensional spiral MR imaging: application to renal multiphase contrast-enhanced angiography. Magn Reson Med 48:290–296

    PubMed  Google Scholar 

  4. Anzalone N, Scomazzoni F, Castellano R et al. (2005) Carotid artery stenosis: intraindividual correlations of 3D time-of-flight MR angiography, contrast-enhanced MR angiography, conventional DSA, and rotational angiography for detection and grading. Radiology 236:204–213

    PubMed  Google Scholar 

  5. Arnold SM, Strecker R, Scheffler K et al. (2003) Dynamic contrast enhancement of paragangliomas of the head and neck: evaluation with time-resolved 2D MR projection angiography. Eur Radiol 13:1608–1611

    PubMed  Google Scholar 

  6. Auer A, Felber S, Schmidauer C, Waldenberger P, Aichner F (1998) Magnetic resonance angiographic and clinical features of extracranial vertebral artery dissection. J Neurol Neurosurg Psychiatry 64:474–481

    PubMed  CAS  Google Scholar 

  7. Aumann S, Schönberg SO, Just A et al. (2003) Quantification of renal perfusion using an intravascular contrast agent (part 1): Results in a canine model. Magn Reson Med 49:276–287

    PubMed  Google Scholar 

  8. Aviv RI, Benseler SM, Silverman ED et al. (2006) MR imaging and angiography of primary CNS vasculitis of childhood. AJNR Am J Neuroradiol 27:192–199

    PubMed  CAS  Google Scholar 

  9. Bachmann R, Nassenstein I, Kooijman H et al. (2006) Spontaneous acute dissection of the internal carotid artery: high-resolution magnetic resonance imaging at 3.0 Tesla with a dedicated surface coil. Invest Radiol 41:105–111

    PubMed  Google Scholar 

  10. Barer D (1998) Endarterectomy for recently symptomatic carotid stenosis. Lancet 352:143–144

    PubMed  CAS  Google Scholar 

  11. Barkhausen J (2006) New imaging protocols for peripheral MRA. In: ECR 2. Vienna, p 500

    Google Scholar 

  12. Barnett HJ, Taylor DW, Eliasziw M et al. (1998) Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med 339:1415–1425

    PubMed  CAS  Google Scholar 

  13. Baumgartner RW, Mattle HP, Aaslid R (1995) Transcranial color-coded duplex sonography, magnetic resonance angiography, and computed tomography angiography: methods, applications, advantages, and limitations. J Clin Ultrasound 23:89–111

    PubMed  CAS  Google Scholar 

  14. Becker BN, Odorico JS, Becker YT et al. (1999) Peripheral vascular disease and renal transplant artery stenosis: a reappraisal of transplant renovascular disease. Clin Transplant 13:349–355

    PubMed  CAS  Google Scholar 

  15. Berg R van den, Wasser MN, van Gils AP, van der Mey AG, Hermans J, van Buchem MA (2000) Vascularization of head and neck paragangliomas: comparison of three MR angiographic techniques with digital subtraction angiography. AJNR Am J Neuroradiol 21:162–170

    PubMed  Google Scholar 

  16. Berg R van den, Schepers A, de Bruine FT et al. (2004a) The value of MR angiography techniques in the detection of head and neck paragangliomas. Eur J Radiol 52:240–245

    PubMed  Google Scholar 

  17. Berg R van den, Verbist BM, Mertens BJ, van der Mey AG, van Buchem MA (2004b) Head and neck paragangliomas: improved tumor detection using contrast-enhanced 3D time-of-flight MR angiography as compared with fat-suppressed MR imaging techniques AJNR Am J Neuroradiol 25:863–870

    Google Scholar 

  18. Berg R van den, (2005) Imaging and management of head and neck paragangliomas. Eur Radiol 15:1310–1318

    PubMed  Google Scholar 

  19. Bezooijen R, van den Bosch HC, Tielbeek AV et al. (2004) Peripheral arterial disease: sensitivity-encoded multiposition MR angiography compared with intraarterial angiography and conventional multiposition MR angiography. Radiology 231:263–271

    PubMed  Google Scholar 

  20. Blatter DD, Parker DL, Robison RO (1991) Cerebral MR angiography with multiple overlapping thin slab acquisition. Part I, Quantitative analysis of vessel visibility. Radiology 179:805–811

    PubMed  CAS  Google Scholar 

  21. Bley TA, Wieben O, Uhl M, Thiel J, Schmidt D, Langer M (2005a) High-resolution MRI in giant cell arteritis: imaging of the wall of the superficial temporal artery. AJR Am J Roentgenol 184:283–287

    PubMed  Google Scholar 

  22. Bley TA, Wieben O, Uhl M et al. (2005b) Integrated head-thoracic vascular MRI at 3 T: assessment of cranial, cervical and thoracic involvement of giant cell arteritis. Magma 18:193–200

    PubMed  CAS  Google Scholar 

  23. Bock M, Schönberg SO, Floemer F, Schad LR (2000) Separation of arteries and veins in 3D MR angiography using correlation analysis. Magn Reson Med 43:481–487

    PubMed  CAS  Google Scholar 

  24. Bogousslavsky J, Regli F (1987) Ischemic stroke in adults younger than 30 years of age. Cause and prognosis. Arch Neurol 44:479–482

    PubMed  CAS  Google Scholar 

  25. Bongartz GM, Boos M, Winter K, Ott H, Scheffler K, Steinbrich W (1997) Clinical utility of contrast-enhanced MR angiography. Eur Radiol 7 Suppl 5:178–186

    Google Scholar 

  26. Born M, Willinek WA, Gieseke J, von Falkenhausen M, Schild H, Kuhl CK (2005) Sensitivity encoding (SENSE) for contrast-enhanced 3D MR angiography of the abdominal arteries. J Magn Reson Imaging 22:559–565

    PubMed  Google Scholar 

  27. Bosmans H, Wilms G, Marchal G, Demaerel P, Baert AL (1995) Characterisation of intracranial aneurysms with MR angiography. Neuroradiology 37:262–266

    PubMed  CAS  Google Scholar 

  28. Brierly J, Redington A, Anderson (2001) Coarctation of the aorta and interrupted aortic arch. In: RH A (ed) Paediatric cardiology, 2nd edn. Churchill Livingstone, Edinburgh, pp 1523–1551

    Google Scholar 

  29. Brugieres P, Blustajn J, Le Guerinel C, Meder JF, Thomas P, Gaston A (1998) Magnetic resonance angiography of giant intracranial aneurysms. Neuroradiology 40:96–102

    PubMed  CAS  Google Scholar 

  30. Bruijn SF de, Stam J, Kappelle LJ (1996) Thunderclap headache as first symptom of cerebral venous sinus thrombosis. CVST Study Group. Lancet 348:1623–1625

    PubMed  Google Scholar 

  31. Buturovic-Ponikvar J (2003) Renal transplant artery stenosis. Nephrol Dial Transplant 18 Suppl 5:v74–77

    Google Scholar 

  32. Carr JC, Shaibani A, Russell E, Finn JP (2001) Contrast-enhanced magnetic resonance angiography of the carotid circulation. Top Magn Reson Imaging 12:349–357

    PubMed  CAS  Google Scholar 

  33. Carr JC, Finn JP (2003) MR imaging of the thoracic aorta. Magn Reson Imaging Clin N Am 11:135–148

    PubMed  Google Scholar 

  34. Carrell TW, Burnand KG, Wells GM, Clements JM, Smith A (2002) Stromelysin-1 (matrix metalloproteinase-3) and tissue inhibitor of metalloproteinase-3 are overexpressed in the wall of abdominal aortic aneurysms. Circulation 105:477–482

    PubMed  CAS  Google Scholar 

  35. Carroll TJ, Korosec FR, Petermann GM, Grist TM, Turski PA (2001) Carotid bifurcation: evaluation of time-resolved three-dimensional contrast-enhanced MR angiography. Radiology 220:525–532

    PubMed  CAS  Google Scholar 

  36. Cavagna E, D’Andrea P, Schiavon F, Tarroni G (2000) Failing hemodialysis arteriovenous fistula and percutaneous treatment: imaging with CT, MRI and digital subtraction angiography. Cardiovasc Intervent Radiol 23:262–265

    PubMed  CAS  Google Scholar 

  37. Chan YL, Leung CB, Yu SC, Yeung DK, Li PK (2001) Comparison of non-breath-hold high resolution gadolinium-enhanced MRA with digital subtraction angiography in the evaluation on allograft renal artery stenosis. Clin Radiol 56:127–132

    PubMed  CAS  Google Scholar 

  38. Charon JP, Milne W, Sheppard DG, Houston JG (2004) Evaluation of MR angiographic technique in the assessment of thoracic outlet syndrome. Clin Radiol 59:588–595

    PubMed  Google Scholar 

  39. Cinat ME, Pham H, Vo D, Gordon I, Wilson SE (1999) Improved imaging of carotid artery bifurcation using helical computed tomographic angiography. Ann Vasc Surg 13:178–183

    PubMed  CAS  Google Scholar 

  40. Clouse WD, Hallett JW Jr, Schaff HV, Gayari MM, Ilstrup DM, Melton LJ III (1998) Improved prognosis of thoracic aortic aneurysms: a population-based study. JAMA 280:1926–1929

    PubMed  CAS  Google Scholar 

  41. Coady MA, Rizzo JA, Goldstein LJ, Elefteriades JA (1999) Natural history, pathogenesis, and etiology of thoracic aortic aneurysms and dissections. Cardiol Clin 17:615–635; vii

    PubMed  CAS  Google Scholar 

  42. Connolly JO, Higgins RM, Walters HL et al. (1994) Presentation, clinical features and outcome in different patterns of atherosclerotic renovascular disease. Qjm 87:413–421

    PubMed  CAS  Google Scholar 

  43. Crivello MS, Porter DH, Kim D, Critchlow JF, Scoutt L (1986) Isolated external iliac artery aneurysm secondary to cystic medial necrosis. Cardiovasc Intervent Radiol 9:139–141

    PubMed  CAS  Google Scholar 

  44. Dagirmanjian A, Ross JS, Obuchowski N et al. (1995) High resolution, magnetization transfer saturation, variable flip angle, time-of-flight MRA in the detection of intracranial vascular stenoses. J Comput Assist Tomogr 19:700–706

    PubMed  CAS  Google Scholar 

  45. Derdeyn CP, Powers WJ, Moran CJ, Cross DT III, Allen BT (1995) Role of Doppler US in screening for carotid atherosclerotic disease. Radiology 197:635–643

    PubMed  CAS  Google Scholar 

  46. Derdeyn CP, Graves VB, Turski PA, Masaryk AM, Strother CM (1997) MR angiography of saccular aneurysms after treatment with Guglielmi detachable coils: preliminary experience. AJNR Am J Neuroradiol 18:279–286

    PubMed  CAS  Google Scholar 

  47. Derex L, Nighoghossian N, Hermier M, Adeleine P, Froment JC, Trouillas P (2002) Early detection of cerebral arterial occlusion on magnetic resonance angiography: predictive value of the baseline NIHSS score and impact on neurological outcome. Cerebrovasc Dis 13:225–229

    PubMed  CAS  Google Scholar 

  48. Dormandy J, Heeck L, Vig S (1999) Lower-extremity arteriosclerosis as a reflection of a systemic process: implications for concomitant coronary and carotid disease. Semin Vasc Surg 12:118–122

    PubMed  CAS  Google Scholar 

  49. Du YP, Parker DL, Davis WL, Cao G (1994) Reduction of partial-volume artifacts with zero-filled interpolation in three-dimensional MR angiography. J Magn Reson Imaging 4:733–741

    PubMed  CAS  Google Scholar 

  50. Dumoulin CL, Hart HR Jr (1986) Magnetic resonance angiography. Radiology 161:717–720

    PubMed  CAS  Google Scholar 

  51. Dumoulin CL, Souza SP, Walker MF, Wagle W (1989) Three-dimensional phase contrast angiography. Magn Reson Med 9:139–149

    PubMed  CAS  Google Scholar 

  52. Dumoulin CL, Yucel EK, Vock P et al. (1990) Two- and three-dimensional phase contrast MR angiography of the abdomen. J Comput Assist Tomogr 14:779–784

    PubMed  CAS  Google Scholar 

  53. Duna GF, Calabrese LH (1995) Limitations of invasive modalities in the diagnosis of primary angiitis of the central nervous system. J Rheumatol 22:662–667

    PubMed  CAS  Google Scholar 

  54. Duran M, Schönberg SO, Yuh WT, Knopp MV, van Kaick G, Essig M (2002) Cerebral arteriovenous malformations: morphologic evaluation by ultrashort 3D gadolinium-enhanced MR angiography. Eur Radiol 12:2957–2964

    PubMed  CAS  Google Scholar 

  55. Dymarkowski S, Bosmans H, Marchal G, Bogaert J (1999) Three-dimensional MR angiography in the evaluation of thoracic outlet syndrome. AJR Am J Roentgenol 173:1005–1008

    PubMed  CAS  Google Scholar 

  56. Edelman RR, Siewert B, Adamis M, Gaa J, Laub G, Wielopolski P (1994) Signal targeting with alternating radiofrequency (STAR) sequences: application to MR angiography. Magn Reson Med 31:233–238

    PubMed  CAS  Google Scholar 

  57. Ekelund L, Sjoqvist L, Thuomas KA, Asberg B (1996) MR angiography of abdominal and peripheral arteries. Techniques and clinical applications. Acta Radiol 37:3–13

    PubMed  CAS  Google Scholar 

  58. Essig M, Engenhart R, Knopp MV et al. (1996) Cerebral arteriovenous malformations: improved nidus demarcation by means of dynamic tagging MR-angiography. Magn Reson Imaging 14:227–233

    PubMed  CAS  Google Scholar 

  59. Essig M, Reichenbach JR, Schad LR, Schönberg SO, Debus J, Kaiser WA (1999) High-resolution MR venography of cerebral arteriovenous malformations. Magn Reson Imaging 17:1417–1425

    PubMed  CAS  Google Scholar 

  60. Evans AL, Coley SC, Wilkinson ID, Griffiths PD (2005) First-line investigation of acute intracerebral hemorrhage using dynamic magnetic resonance angiography. Acta Radiol 46:625–630

    PubMed  CAS  Google Scholar 

  61. Farb RI, Scott JN, Willinsky RA, Montanera WJ, Wright GA, terBrugge KG (2003) Intracranial venous system: gadolinium-enhanced three-dimensional MR venography with auto-triggered elliptic centric-ordered sequence—initial experience. Radiology 226:203–209

    PubMed  Google Scholar 

  62. Farb RI, Nag S, Scott JN et al. (2005) Surveillance of intracranial aneurysms treated with detachable coils: a comparison of MRA techniques. Neuroradiology 47:507–515

    PubMed  Google Scholar 

  63. Fattori R, Celletti F, Descovich B et al. (1998) Evolution of post-traumatic aortic aneurysm in the subacute phase: magnetic resonance imaging follow-up as a support of the surgical timing. Eur J Cardiothorac Surg 13:582–586; discussion 586–587

    PubMed  CAS  Google Scholar 

  64. Fattori R, Napoli G, Lovato L et al. (2003) Descending thoracic aortic diseases: stent-graft repair. Radiology 229:176–183

    PubMed  Google Scholar 

  65. Fattori R, Nienaber CA (1999) MRI of acute and chronic aortic pathology: pre-operative and postoperative evaluation. J Magn Reson Imaging 10:741–750

    PubMed  CAS  Google Scholar 

  66. Fellner C, Lang W, Janka R, Wutke R, Bautz W, Fellner FA (2005) Magnetic resonance angiography of the carotid arteries using three different techniques: accuracy compared with intraarterial X-ray angiography and endarterectomy specimens. J Magn Reson Imaging 21:424–431

    PubMed  Google Scholar 

  67. Fellner FA, Requardt M, Lang W, Fellner C, Bautz W, Cavallaro A (2003) Peripheral vessels: MR angiography with dedicated phased-array coil with large-field-of-view adapter feasibility study. Radiology 228:284–289

    PubMed  Google Scholar 

  68. Fenchel M, Nael K, Ruehm S, Finn JP, Miller S, Laub G (2006a) Isotropic high spatial resolution magnetic resonance angiography of the supra-aortic arteries using two-dimensional parallel imaging (iPA T 2 ) at 3 Tesla: a feasibility study. Invest Radiol 41:545–552

    Google Scholar 

  69. Fenchel M, Scheule AM, Stauder NI et al. (2006b) Atherosclerotic disease: whole-body cardiovascular imaging with MR system with 32 receiver channels and total-body surface coil technology—initial clinical results. Radiology 238:280–291

    PubMed  Google Scholar 

  70. Ferrari VA, Scott CH, Holland GA, Axel L, Sutton MS (2001) Ultrafast three-dimensional contrast-enhanced magnetic resonance angiography and imaging in the diagnosis of partial anomalous pulmonary venous drainage. J Am Coll Cardiol 37:1120–1128

    PubMed  CAS  Google Scholar 

  71. Festa P, Ait-Ali L, Cerillo AG, De Marchi D, Murzi B. Magnetic resonance imaging is the diagnostic tool of choice in the preoperative evaluation of patients with partial anomalous pulmonary venous return. Int J Cardiovasc Imaging 2006

    Google Scholar 

  72. Fink C, Bock M, Puderbach M, Schmahl A, Delorme S (2003a) Partially parallel three-dimensional magnetic resonance imaging for the assessment of lung perfusion—initial results. Invest Radiol 38:482–488

    PubMed  Google Scholar 

  73. Fink C, Schmaehl A, Bock M, Tuengerthal S, Delorme S (2003b) Images in cardiovascular medicine. Pulmonary vein stenosis after radiofrequency ablation for atrial fibrillation: image findings with multiphasic pulmonary magnetic resonance angiography. Circulation 107:e129–130

    Google Scholar 

  74. Fink C, Risse F, Buhmann R et al. (2004a) Quantitative analysis of pulmonary perfusion using time-resolved parallel 3D MRI—initial results. RoFo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 176:170–174

    PubMed  CAS  Google Scholar 

  75. Fink C, Ley S, Puderbach M, Plathow C, Bock M, Kauczor HU (2004c) 3D pulmonary perfusion MRI and MR angiography of pulmonary embolism in pigs after a single injection of a blood pool MR contrast agent. Eur Radiol 14:1291–1296

    PubMed  Google Scholar 

  76. Fink C, Puderbach M, Bock M et al. (2004b) Regional lung perfusion: assessment with partially parallel three-dimensional MR imaging. Radiology 231:175–184

    PubMed  Google Scholar 

  77. Fink C, Puderbach M, Ley S et al. (2005a) Intraindividual comparison of 1.0 M gadobutrol and 0.5 M gadopentetate dimeglumine for time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the upper torso. J Magn Reson Imaging 22:286–290

    PubMed  Google Scholar 

  78. Fink C, Ley S, Risse F et al. (2005b) Effect of inspiratory and expiratory breathhold on pulmonary perfusion: assessment by pulmonary perfusion magnetic resonance imaging. Invest Radiol 40:72–79

    PubMed  Google Scholar 

  79. Fink C, Kauczor HU (2006) Clinical applications of MRI in respiratory diseases. In: Beckmann N (ed) In vivo MR techniques in drug discovery and development. CRC Press, Boca Raton, pp 378–389

    Google Scholar 

  80. Fishman AP (1063) Dynamic of the pulmonary circulation. In: Hamilton WF (ed) Handbook of physiology. American Physiological Society, Washington D.C., p 1708

    Google Scholar 

  81. Forsting M (2005) CTA of the ICA bifurcation and intracranial vessels. Eur Radiol 15 Suppl 4:D25–27

    Google Scholar 

  82. Fukui M (1997) Guidelines for the diagnosis and treatment of spontaneous occlusion of the circle of Willis (“moyamoya” disease). Research Committee on Spontaneous Occlusion of the Circle of Willis (Moyamoya Disease) of the Ministry of Health and Welfare, Japan. Clin Neurol Neurosurg 99 Suppl 2:S238–240

    Google Scholar 

  83. Fushimi Y, Miki Y, Kikuta K et al. (2006) Comparison of 3.0- and 1.5-T three-dimensional time-of-flight MR angiography in moyamoya disease: preliminary experience. Radiology 239:232–237

    PubMed  Google Scholar 

  84. Gandy SJ, Almahri A, Armoogum K, Sudarshan TA, Milne W, Houston JG (2004) Perfusion parameters of MR renography are associated with cardiovascular disease risk factors and clinical indices of kidney function. In: Annual Conference of the International Society for Magnetic Resonance in Medicine. Kyoto

    Google Scholar 

  85. Gauvrit JY, Leclerc X, Caron S, Taschner CA, Lejeune JP, Pruvo JP (2006) Intracranial aneurysms treated with Guglielmi detachable coils: imaging follow-up with contrast-enhanced MR angiography. Stroke 37:1033–1037

    PubMed  Google Scholar 

  86. Germain DP (2002) Clinical and genetic features of vascular Ehlers-Danlos syndrome. Ann Vasc Surg 16:391–397

    PubMed  Google Scholar 

  87. Gibbs GF, Huston J III, Bernstein MA, Riederer SJ, Brown RD Jr (2004) Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-flight MR angiography. AJNR Am J Neuroradiol 25:84–87

    PubMed  Google Scholar 

  88. Golay X, Brown SJ, Itoh R, Melhem ER (2001) Time-resolved contrast-enhanced carotid MR angiography using sensitivity encoding (SENSE). AJNR Am J Neuroradiol 22:1615–1619

    PubMed  CAS  Google Scholar 

  89. Goldfarb JW (2004) The SENSE ghost: field-of-view restrictions for SENSE imaging. J Magn Reson Imaging 20:1046–1051

    PubMed  Google Scholar 

  90. Gonner F, Heid O, Remonda L et al. (1998) MR angiography with ultrashort echo time in cerebral aneurysms treated with Guglielmi detachable coils. AJNR Am J Neuroradiol 19:1324–1328

    PubMed  CAS  Google Scholar 

  91. Gottschalk S, Gaebel C, Haendler G et al. (2002) [Contrast-enhanced intracranial 3 D MR angiography (CE MRA) in assessing arterial stenoses and aneurysms]. RoFo 174:704–713

    PubMed  CAS  Google Scholar 

  92. Goyen M, Laub G, Ladd ME et al. (2001a) Dynamic 3D MR angiography of the pulmonary arteries in under four s. J Magn Reson Imaging 13:372–377

    PubMed  CAS  Google Scholar 

  93. Goyen M, Debatin JF, Ruehm SG (2001b) Peripheral magnetic resonance angiography. Top Magn Reson Imaging 12:327–335

    PubMed  CAS  Google Scholar 

  94. Goyen M, Ruehm SG, Barkhausen J et al. (2001c) Improved multi-station peripheral MR angiography with a dedicated vascular coil. J Magn Reson Imaging 13:475–480

    PubMed  CAS  Google Scholar 

  95. Goyen M, Quick HH, Debatin JF et al. (2002) Whole-body three-dimensional MR angiography with a rolling table platform: initial clinical experience. Radiology 224:270–277

    PubMed  Google Scholar 

  96. Goyen M, Herborn CU, Kroger K, Lauenstein TC, Debatin JF, Ruehm SG (2003) Detection of atherosclerosis: systemic imaging for systemic disease with whole-body three-dimensional MR angiography—initial experience. Radiology 227:277–282

    PubMed  Google Scholar 

  97. Greil GF, Powell AJ, Gildein HP, Geva T (2002) Gadolinium-enhanced three-dimensional magnetic resonance angiography of pulmonary and systemic venous anomalies. J Am Coll Cardiol 39:335–341

    PubMed  Google Scholar 

  98. Griffiths PD, Hoggard N, Warren DJ, Wilkinson ID, Anderson B, Romanowski CA (2000) Brain arteriovenous malformations: assessment with dynamic MR digital subtraction angiography. AJNR Am J Neuroradiol 21:1892–1899

    PubMed  CAS  Google Scholar 

  99. Griswold MA, Jakob PM, Heidemann RM et al. (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210

    PubMed  Google Scholar 

  100. Griswold MA, Kannengiesser S, Heidemann RM, Wang J, Jakob PM (2004) Field-of-view limitations in parallel imaging. Magn Reson Med 52:1118–1126

    PubMed  Google Scholar 

  101. Gupta A, Frazer CK, Ferguson JM et al. (1999) Acute pulmonary embolism: diagnosis with MR angiography. Radiology 210:353–359

    PubMed  CAS  Google Scholar 

  102. Hagspiel KD, Spinosa DJ, Angle JF, Matsumoto AH (2000) Diagnosis of vascular compression at the thoracic outlet using gadolinium-enhanced high-resolution ultrafast MR angiography in abduction and adduction. Cardiovasc Intervent Radiol 23:152–154

    PubMed  CAS  Google Scholar 

  103. Han KM, Duijm LE, Thelissen GR et al. (2003) Failing hemodialysis access grafts: evaluation of complete vascular tree with 3D contrast-enhanced MR angiography with high spatial resolution: initial results in 10 patients. Radiology 227:601–605

    PubMed  Google Scholar 

  104. Hasuo K, Mihara F, Matsushima T (1998) MRI and MR angiography in moyamoya disease. J Magn Reson Imaging 8:762–766

    PubMed  CAS  Google Scholar 

  105. Haust MD (1987) Arterial involvement in genetic diseases. Am J Cardiovasc Pathol 1:231–285

    PubMed  CAS  Google Scholar 

  106. Heidemann RM, Griswold MA, Muller M et al. (2004) Feasibilities and limitations of high field parallel MRI. Radiologe 44:49–55

    PubMed  CAS  Google Scholar 

  107. Heiserman JE, Drayer BP, Fram EK et al. (1992) Carotid artery stenosis: clinical efficacy of two-dimensional time-of-flight MR angiography. Radiology 182:761–768

    PubMed  CAS  Google Scholar 

  108. Henderson RD, Eliasziw M, Fox AJ, Rothwell PM, Barnett HJ (2000) Angiographically defined collateral circulation and risk of stroke in patients with severe carotid artery stenosis. North American Symptomatic Carotid Endarterectomy Trial (NASCET) Group. Stroke 31:128–132

    PubMed  CAS  Google Scholar 

  109. Herborn CU, Goyen M, Lauenstein TC, Debatin JF, Ruehm SG, Kroger K (2003) Comprehensive time-resolved MRI of peripheral vascular malformations. AJR Am J Roentgenol 181:729–735

    PubMed  Google Scholar 

  110. Herborn CU, Ajaj W, Goyen M, Massing S, Ruehm SG, Debatin JF (2004a) Peripheral vasculature: whole-body MR angiography with midfemoral venous compression—initial experience. Radiology 230:872–878

    PubMed  Google Scholar 

  111. Herborn CU, Goyen M, Quick HH et al. (2004b) Whole-body 3D MR angiography of patients with peripheral arterial occlusive disease. AJR Am J Roentgenol 182:1427–1434

    PubMed  Google Scholar 

  112. Ho KY, de Haan MW, Kessels AG, Kitslaar PJ, van Engelshoven JM (1998) Peripheral vascular tree stenoses: detection with subtracted and nonsubtracted MR angiography. Radiology 206:673–681

    PubMed  CAS  Google Scholar 

  113. Hoksbergen AW, Majoie CB, Hulsmans FJ, Legemate DA (2003) Assessment of the collateral function of the circle of Willis: three-dimensional time-of-flight MR angiography compared with transcranial color-coded duplex sonography. AJNR Am J Neuroradiol 24:456–462

    PubMed  Google Scholar 

  114. Howard G, Baker WH, Chambless LE, Howard VJ, Jones AM, Toole JF (1996) An approach for the use of Doppler ultrasound as a screening tool for hemodynamically significant stenosis (despite heterogeneity of Doppler performance). A multicenter experience. Asymptomatic Carotid Atherosclerosis Study Investigators. Stroke 27:1951–1957

    PubMed  CAS  Google Scholar 

  115. Hu HH, Madhuranthakam AJ, Kruger DG, Huston J III, Riederer SJ (2004) Improved venous suppression and spatial resolution with SENSE in elliptical centric 3D contrast-enhanced MR angiography. Magn Reson Med 52:761–765

    PubMed  Google Scholar 

  116. Ilgit ET, Vural M, Oguz A, Ozdogan ME (1999) Peripheral arterial involvement in neurofibromatosis type 1—a case report. Angiology 50:955–958

    PubMed  CAS  Google Scholar 

  117. Janka R, Fellner F, Fellner C et al. (2000) Dedicated phased-array coil for peripheral MRA. Eur Radiol 10:1745–1749

    PubMed  CAS  Google Scholar 

  118. Jeong JY, Kim SH, Lee HJ, Sim JS (2002) Atypical low-signal-intensity renal parenchyma: causes and patterns. Radiographics 22:833–846

    PubMed  Google Scholar 

  119. Jeremias A, Huegel H, Lee DP et al. (2000) Spatial orientation of atherosclerotic plaque in non-branching coronary artery segments. Atherosclerosis 152:209–215

    PubMed  CAS  Google Scholar 

  120. Johnson MB, Wilkinson ID, Wattam J, Venables GS, Griffiths PD (2000) Comparison of Doppler ultrasound, magnetic resonance angiographic techniques and catheter angiography in evaluation of carotid stenosis. Clin Radiol 55:912–920

    PubMed  CAS  Google Scholar 

  121. Julsrud PR, Breen JF, Felmlee JP, Warnes CA, Connolly HM, Schaff HV (1997) Coarctation of the aorta: collateral flow assessment with phase-contrast MR angiography. AJR Am J Roentgenol 169:1735–1742

    PubMed  CAS  Google Scholar 

  122. Kahara VJ, Seppanen SK, Ryymin PS, Mattila P, Kuurne T, Laasonen EM (1999) MR angiography with three-dimensional time-of-flight and targeted maximum-intensity-projection reconstructions in the follow-up of intracranial aneurysms embolized with Guglielmi detachable coils. AJNR Am J Neuroradiol 20:1470–1475

    PubMed  CAS  Google Scholar 

  123. Keller E, Flacke S, Gieseke J et al. (1997) Kraniozervikale Dissektionen: Untersuchungsstrategien in der MR-Tomographie und MR-Angiographie. RoFo 167:565–571

    PubMed  CAS  Google Scholar 

  124. Khurshid I, Downie GH (2002) Pulmonary arteriovenous malformation. Postgrad Med J 78:191–197

    PubMed  CAS  Google Scholar 

  125. Kirchhof K, Welzel T, Jansen O, Sartor K (2002) More reliable noninvasive visualization of the cerebral veins and dural sinuses: comparison of three MR angiographic techniques. Radiology 224:804–810

    PubMed  Google Scholar 

  126. Kitanaka C, Tanaka J, Kuwahara M, Teraoka A (1994) Magnetic resonance imaging study of intracranial vertebrobasilar artery dissections. Stroke 25:571–575

    PubMed  CAS  Google Scholar 

  127. Klufas RA, Hsu L, Barnes PD, Patel MR, Schwartz RB (1995) Dissection of the carotid and vertebral arteries: imaging with MR angiography. AJR Am J Roentgenol 164:673–677

    PubMed  CAS  Google Scholar 

  128. Kluge A, Dill T, Ekinci O et al. (2004) Decreased pulmonary perfusion in pulmonary vein stenosis after radiofrequency ablation: assessment with dynamic magnetic resonance perfusion imaging. Chest 126:428–437

    PubMed  Google Scholar 

  129. Ko GY, Byun JY, Choi BG, Cho SH (2000) The vascular manifestations of Behçet’s disease: angiographic and CT findings. Br J Radiol 73:1270–1274

    PubMed  CAS  Google Scholar 

  130. Koelemay MJ, Nederkoorn PJ, Reitsma JB, Majoie CB (2004) Systematic review of computed tomographic angiography for assessment of carotid artery disease. Stroke 35:2306–2312

    PubMed  Google Scholar 

  131. Konner K, Nonnast-Daniel B, Ritz E (2003) The arteriovenous fistula. J Am Soc Nephrol 14:1669–1680

    PubMed  Google Scholar 

  132. Korosec FR, Frayne R, Grist TM, Mistretta CA (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36:345–351

    PubMed  CAS  Google Scholar 

  133. Kramer H, Schönberg SO, Nikolaou K et al. (2005) Cardiovascular screening with parallel imaging techniques and a whole-body MR imager. Radiology 236:300–310

    PubMed  Google Scholar 

  134. Kransdorf MJ, Turner-Stepahin S, Merritt WH (1998) Magnetic resonance angiography of the hand and wrist: evaluation of patients with severe ischemic disease. J Reconstr Microsurg 14:77–81

    PubMed  CAS  Google Scholar 

  135. Kreitner KF, Ley S, Kauczor HU et al. (2004) Chronic thromboembolic pulmonary hypertension: pre- and postoperative assessment with breath-hold MR imaging techniques. Radiology 232:535–543

    PubMed  Google Scholar 

  136. Krings T, Hans FJ, Moller-Hartmann W et al. (2002) Time-of-flight-, phase contrast and contrast enhanced magnetic resonance angiography for pre-interventional determination of aneurysm size, configuration, and neck morphology in an aneurysm model in rabbits. Neurosci Lett 326:46–50

    PubMed  CAS  Google Scholar 

  137. Krinsky G, Rofsky NM (1998) MR angiography of the aortic arch vessels and upper extremities. Magn Reson Imaging Clin N Am 6:269–292

    PubMed  CAS  Google Scholar 

  138. Kuntz KM, Skillman JJ, Whittemore AD, Kent KC (1995) Carotid endarterectomy in asymptomatic patients—is contrast angiography necessary? A morbidity analysis. J Vasc Surg 22:706–714; discussion 714–706

    PubMed  CAS  Google Scholar 

  139. Laghi A, Iannaccone R, Catalano C, Passariello R (2001) Multislice spiral computed tomography angiography of mesenteric arteries. Lancet 358:638–639

    PubMed  CAS  Google Scholar 

  140. Leclerc X, Lucas C, Godefroy O et al. (1999) Preliminary experience using contrast-enhanced MR angiography to assess vertebral artery structure for the follow-up of suspected dissection. AJNR Am J Neuroradiol 20:1482–1490

    PubMed  CAS  Google Scholar 

  141. Lee VS, Morgan JN, Tan AG et al. (2003) Celiac artery compression by the median arcuate ligament: a pitfall of end-expiratory MR imaging. Radiology 228:437–442

    PubMed  Google Scholar 

  142. Leiner T (2005) Magnetic resonance angiography of abdominal and lower extremity vasculature. Top Magn Reson Imaging 16:21–66

    PubMed  Google Scholar 

  143. Leiner T, Gerretsen S, Botnar R et al. (2005a) Magnetic resonance imaging of atherosclerosis. Eur Radiol 15:1087–1099

    PubMed  CAS  Google Scholar 

  144. Leiner T, Kessels AG, Nelemans PJ et al. (2005b) Peripheral arterial disease: comparison of color duplex US and contrast-enhanced MR angiography for diagnosis. Radi­olo­gy 235:699–708

    Google Scholar 

  145. Leseche G, Schaetz A, Arrive L, Nussaume O, Andreassian B (1992) Diagnosis and management of 17 consecutive patients with inflammatory abdominal aortic aneurysm. Am J Surg 164:39–44

    PubMed  CAS  Google Scholar 

  146. Levy C, Laissy JP, Raveau V et al. (1994) Carotid and vertebral artery dissections: three-dimensional time-of-flight MR angiography and MR imaging versus conventional angiography. Radiology 190:97–103

    PubMed  CAS  Google Scholar 

  147. Ley S, Fink C, Zaporozhan J et al. Value of high spatial and high temporal resolution magnetic resonance angiography for differentiation between idiopathic and thromboembolic pulmonary hypertension: initial results. Eur Radiol 2005

    Google Scholar 

  148. Ley S, Kauczor HU, Heussel CP et al. (2003) Value of contrast-enhanced MR angiography and helical CT angiography in chronic thromboembolic pulmonary hypertension. Eur Radiol 13:2365–2371

    PubMed  Google Scholar 

  149. Ley S, Kreitner KF, Fink C, Heussel CP, Borst MM, Kauczor HU (2004) Assessment of pulmonary hypertension by CT and MR imaging. Eur Radiol 14:359–368

    PubMed  Google Scholar 

  150. Litt AW, Eidelman EM, Pinto RS et al. (1991) Diagnosis of carotid artery stenosis: comparison of 2DFT time-of-flight MR angiography with contrast angiography in 50 patients. AJNR Am J Neuroradiol 12:149–154

    PubMed  CAS  Google Scholar 

  151. Lovblad KO, Schneider J, Bassetti C et al. (2002) Fast contrast-enhanced MR whole-brain venography. Neuroradiology 44:681–688

    PubMed  Google Scholar 

  152. Ma SK, Kim SW, Kim NH, Choi KC (2002) Renal vein and inferior vena cava thrombosis associated with acute pancreatitis. Nephron 92:475–477

    PubMed  Google Scholar 

  153. Maki DD, Siegelman ES, Roberts DA, Baum RA, Gefter WB (2001) Pulmonary arteriovenous malformations: three-dimensional gadolinium-enhanced MR angiography-initial experience. Radiology 219:243–246

    PubMed  CAS  Google Scholar 

  154. Markl M, Uhl M, Wieben O et al. (2006) High resolution 3 T MRI for the assessment of cervical and superficial cranial arteries in giant cell arteritis. J Magn Reson Imaging

    Google Scholar 

  155. Marks MP, Napel S, Jordan JE, Enzmann DR (1993) Diagnosis of carotid artery disease: preliminary experience with maximum-intensity-projection spiral CT angiography. AJR Am J Roentgenol 160:1267–1271

    PubMed  CAS  Google Scholar 

  156. Mathews VP, Elster AD, King JC, Ulmer JL, Hamilton CA, Strottmann JM (1995) Combined effects of magnetization transfer and gadolinium in cranial MR imaging and MR angiography. AJR Am J Roentgenol 164:169–172

    PubMed  CAS  Google Scholar 

  157. Matsubara TK, Fong HM, Burns CM (1990) Computed tomography of abdomen (CTA) in management of blunt abdominal trauma. J Trauma 30:410–414

    PubMed  CAS  Google Scholar 

  158. Meaney JF, Weg JG, Chenevert TL, Stafford-Johnson D, Hamilton BH, Prince MR (1997) Diagnosis of pulmonary embolism with magnetic resonance angiography. N Engl J Med 336:1422–1427

    PubMed  CAS  Google Scholar 

  159. Meissner OA, Rieger J, Weber C et al. (2005) Critical limb ischemia: hybrid MR angiography compared with DSA. Radiology 235:308–318

    PubMed  Google Scholar 

  160. Mermuys KP, Vanhoenacker PK, Chappel P, Van Hoe L (2005) Three-dimensional venography of the brain with a volumetric interpolated sequence. Radiology 234:901–908

    PubMed  Google Scholar 

  161. Michaely HJ, Herrmann KA, Kramer H, Laub G, Reiser MF, Schönberg SO (2004a) The significance of MR angiography for the diagnosis of carotid stenoses. Radiologe 44:975–984

    PubMed  CAS  Google Scholar 

  162. Michaely HJ, Schönberg SO, Ittrich C, Dikow R, Bock M, Guenther M (2004b) Renal disease: value of functional magnetic resonance imaging with flow and perfusion measurements. Invest Radiol 39:698–705

    PubMed  Google Scholar 

  163. Michaely HJ, Schönberg SO, Oesingmann N, Reiser MF (2004c) Assessment of renal transplants using functional magnetic resonance. In: MRA Workshop. London, Ont., p111

    Google Scholar 

  164. Michaely HJ, Nael K, Schönberg SO et al. (2005a) The feasibility of spatial high-resolution magnetic resonance angiography (MRA) of the renal arteries at 3.0 T. RoFo 177:800–804

    PubMed  CAS  Google Scholar 

  165. Michaely HJ, Schönberg SO, Rieger JR, Reiser MF (2005b) MR angiography in patients with renal disease. Magn Reson Imaging Clin N Am 13:131–151

    PubMed  Google Scholar 

  166. Michaely HJ, Schönberg SO, Oesingmann N et al. (2006a) Renal artery stenosis: functional assessment with dynamic MR perfusion measurements—feasibility study. Radiology 238:586–596

    PubMed  Google Scholar 

  167. Michaely HJ, Nael K, Schönberg SO et al. (2006b) Renal perfusion: Comparison of SR-TurboFLASH measurements at 1.5T with SR-TurboFLASH and TREAT (time-resolved echo-shared angiographic technique) measurements at 3 T. J Magn Reson Imaging 24:1413–1419

    PubMed  Google Scholar 

  168. Michaely HJ, Schönberg SO, Oesingmann N et al. (2006c) Functional assessment of renal artery stenosis using dynamic MR perfusion measurements - feasibility. Radiology 238:586–596

    PubMed  Google Scholar 

  169. Michaely HJ, Herrmann KA, Kramer H, Dietrich O, Reiser MF, Schönberg SO (2006d) High-resolution renal MRA: comparison of image quality and vessel depiction with different parallel imaging acceleration factors. J Magn Reson Imaging 24(1):95–100

    PubMed  Google Scholar 

  170. Michaely HJ, Herrmann KA, Dietrich O, Reiser MF, Schönberg SO (2007) Quantitative and qualitative characterization of vascularization and hemodynamics in head and neck tumors with a 3D magnetic resonance time-resolved echo-shared angiographic technique (TREAT) - Initial Results. European Radiology 17(4):1101–1110

    PubMed  CAS  Google Scholar 

  171. Missouris CG, Buckenham T, Cappuccio FP, MacGregor GA (1994) Renal artery stenosis: a common and important problem in patients with peripheral vascular disease. Am J Med 96:10–14

    PubMed  CAS  Google Scholar 

  172. Mitra D, Connolly D, Jenkins S et al. (2006) Comparison of image quality, diagnostic confidence and interobserver variability in contrast enhanced MR angiography and 2D time of flight angiography in evaluation of carotid stenosis. Br J Radiol 79:201–207

    PubMed  CAS  Google Scholar 

  173. Modaresi KB, Cox TC, Summers PE et al. (1999) Comparison of intra-arterial digital subtraction angiography, magnetic resonance angiography and duplex ultrasonography for measuring carotid artery stenosis. Br J Surg 86:1422–1426

    PubMed  CAS  Google Scholar 

  174. Mohiaddin RH, Schoser K, Amanuma M, Burman ED, Longmore DB (1990) MR imaging of age-related dimensional changes of thoracic aorta. J Comput Assist Tomogr 14:748–752

    PubMed  CAS  Google Scholar 

  175. Molinari F, Fink C, Risse F, Tuengerthal S, Bonomo L, Kauczor HU (2006) Assessment of differential pulmonary blood flow using perfusion magnetic resonance imaging: comparison with radionuclide perfusion scintigraphy. Invest Radiol 41:624–630

    PubMed  Google Scholar 

  176. Nael K, Laub G, Finn JP (2005) Three-dimensional contrast-enhanced MR angiography of the thoraco-abdominal vessels. Magn Reson Imaging Clin N Am 13:359–380

    PubMed  Google Scholar 

  177. Nael K, Ruehm SG, Michaely HJ et al. (2006a) High spatial-resolution CE MRA of the carotid circulation with parallel imaging: comparison of image quality between 2 different acceleration factors at 3.0. Tesla Invest Radiol 41:391–399

    Google Scholar 

  178. Nael K, Michaely HJ, Villablanca P, Salamon N, Laub G, Finn JP (2006b) Time-resolved contrast enhanced magnetic resonance angiography of the head and neck at 3.0 Tesla: initial results Invest Radiol 41:116–124

    Google Scholar 

  179. Nagaraja S, Capener D, Coley SC et al. (2005) Brain arteriovenous malformations: measurement of nidal volume using a combination of static and dynamic magnetic resonance angiography techniques. Neuroradiology 47:387–392

    PubMed  CAS  Google Scholar 

  180. Nagele T, Klose U, Grodd W, Petersen D, Tintera J (1994) The effects of linearly increasing flip angles on 3D inflow MR angiography. Magn Reson Med 31:561–566

    PubMed  CAS  Google Scholar 

  181. Nederkoorn PJ, Elgersma OE, van der Graaf Y, Eikelboom BC, Kappelle LJ, Mali WP (2003a) Carotid artery stenosis: accuracy of contrast-enhanced MR angiography for diagnosis Radiology 228:677–682

    Google Scholar 

  182. Nederkoorn PJ, van der Graaf Y, Hunink MG (2003b) Duplex ultrasound and magnetic resonance angiography compared with digital subtraction angiography in carotid artery stenosis: a systematic review Stroke 34:1324–1332

    Google Scholar 

  183. Nikolaou K, Schönberg SO, Attenberger U et al. (2005) Pulmonary Arterial Hypertension: Diagnosis with Fast Perfusion MR Imaging and High-Spatial-Resolution MR Angiography—Preliminary Experience. Radiology 236:694–703

    PubMed  Google Scholar 

  184. Nikolaou K, Schönberg SO, Brix G et al. (2004) Quantification of pulmonary blood flow and volume in healthy volunteers by dynamic contrast-enhanced magnetic resonance imaging using a parallel imaging technique. Invest Radiol 39:537–545

    PubMed  Google Scholar 

  185. Nollen GJ, van Schijndel KE, Timmermans J et al. (2003) Magnetic resonance imaging of the main pulmonary artery: reliable assessment of dimensions in Marfan patients on a simple axial spin echo image. Int J Cardiovasc Imaging 19:141–147; discussion 149–150

    PubMed  CAS  Google Scholar 

  186. O’Duffy JD (1990a) Vasculitis in Behçet’s disease Rheum Dis Clin North Am 16:423–431

    Google Scholar 

  187. O’Duffy JD (1990b) Behçet’s syndrome N Engl J Med 322:326–328

    Google Scholar 

  188. Oelerich M, Lentschig MG, Zunker P, Reimer P, Rummeny EJ, Schuierer G (1998) Intracranial vascular stenosis and occlusion: comparison of 3D time-of-flight and 3D phase-contrast MR angiography. Neuroradiology 40:567–573

    PubMed  CAS  Google Scholar 

  189. Ohno Y, Hatabu H, Takenaka D, Adachi S, Hirota S, Sugimura K (2002) Contrast-enhanced MR perfusion imaging and MR angiography: utility for management of pulmonary arteriovenous malformations for embolotherapy. Eur J Radiol 41:136–146

    PubMed  Google Scholar 

  190. Ohno Y, Kawamitsu H, Higashino T et al. (2003) Time-resolved contrast-enhanced pulmonary MR angiography using sensitivity encoding (SENSE). J Magn Reson Imaging 17:330–336

    PubMed  Google Scholar 

  191. Ohno Y, Hatabu H, Murase K et al. (2004a) Quantitative assessment of regional pulmonary perfusion in the entire lung using three-dimensional ultrafast dynamic contrast-enhanced magnetic resonance imaging: Preliminary experience in 40 subjects. J Magn Reson Imaging 20:353–365

    PubMed  Google Scholar 

  192. Ohno Y, Higashino T, Takenaka D et al. (2004b) MR angiography with sensitivity encoding (SENSE) for suspected pulmonary embolism: comparison with MDCT and ventilation-perfusion scintigraphy. AJR Am J Roentgenol 183:91–98

    PubMed  Google Scholar 

  193. Olin JW (1994) Thromboangiitis obliterans. Curr Opin Rheumatol 6:44–49

    PubMed  CAS  Google Scholar 

  194. Olin JW (2000) Thromboangiitis obliterans (Buerger’s disease). N Engl J Med 343:864–869

    PubMed  CAS  Google Scholar 

  195. Olin JW (2004) Renal artery disease: diagnosis and management. Mt Sinai J Med 71:73–85

    PubMed  Google Scholar 

  196. Olin JW, Young JR, Graor RA, Ruschhaupt WF, Bartholomew JR (1990) The changing clinical spectrum of thromboangiitis obliterans (Buerger’s disease). Circulation 82:IV3–8

    Google Scholar 

  197. Oudkerk M, van Beek EJ, Wielopolski P et al. (2002) Comparison of contrast-enhanced magnetic resonance angiography and conventional pulmonary angiography for the diagnosis of pulmonary embolism: a prospective study. Lancet 359:1643–1647

    PubMed  Google Scholar 

  198. Ozsarlak O, Van Goethem JW, Maes M, Parizel PM (2004) MR angiography of the intracranial vessels: technical aspects and clinical applications. Neuroradiology 46:955–972

    PubMed  Google Scholar 

  199. Ozsvath RR, Casey SO, Lustrin ES, Alberico RA, Hassankhani A, Patel M (1997) Cerebral venography: comparison of CT and MR projection venography. AJR Am J Roentgenol 169:1699–1707

    PubMed  CAS  Google Scholar 

  200. Paddon AJ, Nicholson AA, Ettles DF, Travis SJ, Dyet JF (2000) Long-term follow-Up of percutaneous balloon angioplasty in adult aortic coarctation. Cardiovasc Intervent Radiol 23:364–367

    PubMed  CAS  Google Scholar 

  201. Patel MR, Kuntz KM, Klufas RA et al. (1995) Preoperative assessment of the carotid bifurcation. Can magnetic resonance angiography and duplex ultrasonography replace contrast arteriography? Stroke 26:1753–1758

    PubMed  CAS  Google Scholar 

  202. Pereles FS, McCarthy RM, Baskaran V et al. (2002) Thoracic aortic dissection and aneurysm: evaluation with nonenhanced true FISP MR angiography in less than 4 minutes. Radiology 223:270–274

    PubMed  Google Scholar 

  203. Pierot L, Delcourt C, Bouquigny F et al. (2006) Follow-up of intracranial aneurysms selectively treated with coils: Prospective evaluation of contrast-enhanced MR angiography. AJNR Am J Neuroradiol 27:744–749

    PubMed  CAS  Google Scholar 

  204. Planken RN, Tordoir JH, Dammers R et al. (2003) Stenosis detection in forearm hemodialysis arteriovenous fistulae by multiphase contrast-enhanced magnetic resonance angiography: preliminary experience. J Magn Reson Imaging 17:54–64

    PubMed  Google Scholar 

  205. Polak JF, Bajakian RL, O’Leary DH, Anderson MR, Donaldson MC, Jolesz FA (1992) Detection of internal carotid artery stenosis: comparison of MR angiography, color Doppler sonography, and arteriography. Radiology 182:35–40

    PubMed  CAS  Google Scholar 

  206. Polak JF, Kalina P, Donaldson MC, O’Leary DH, Whittemore AD, Mannick JA (1993) Carotid endarterectomy: preoperative evaluation of candidates with combined Doppler sonography and MR angiography. Work in progress. Radiology 186:333–338

    PubMed  CAS  Google Scholar 

  207. Potchen EJ (1992) Magnetic resonance angiography (MRA). Semin Ultrasound CT MR 13:225–226

    PubMed  CAS  Google Scholar 

  208. Pozniak MA, Balison DJ, Lee FT Jr, Tambeaux RH, Uehling DT, Moon TD (1998) CT angiography of potential renal transplant donors. Radiographics 18:565–587

    PubMed  CAS  Google Scholar 

  209. Prince MR, Yucel EK, Kaufman JA, Harrison DC, Geller SC (1993) Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging 3:877–881

    PubMed  CAS  Google Scholar 

  210. Prince MR, Narasimham DL, Stanley JC et al. (1995) Breath-hold gadolinium-enhanced MR angiography of the abdominal aorta and its major branches. Radiology 197:785–792

    PubMed  CAS  Google Scholar 

  211. Prince MR, Schönberg SO, Ward JS, Londy FJ, Wakefield TW, Stanley JC (1997) Hemodynamically significant atherosclerotic renal artery stenosis: MR angiographic features. Radiology 205:128–136

    PubMed  CAS  Google Scholar 

  212. Prince MR, Grist TM, Debatin JF (2003) 3D contrast MR angiography. Berlin; New York: Springer-Verlag

    Google Scholar 

  213. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    PubMed  CAS  Google Scholar 

  214. Pui MH (2004) Cerebral MR venography. Clin Imaging 28:85–89

    PubMed  Google Scholar 

  215. Radermacher J, Chavan A, Bleck J et al. (2001) Use of Doppler ultrasonography to predict the outcome of therapy for renal-artery stenosis. N Engl J Med 344:410–417

    PubMed  CAS  Google Scholar 

  216. Randoux B, Marro B, Koskas F, Chiras J, Dormont D, Marsault C (2003) Proximal great vessels of aortic arch: comparison of three-dimensional gadolinium-enhanced MR angiography and digital subtraction angiography. Radiology 229:697–702

    PubMed  Google Scholar 

  217. Reddy KS, Yusuf S (1998) Emerging epidemic of cardiovascular disease in developing countries. Circulation 97:596–601

    PubMed  CAS  Google Scholar 

  218. Renowden S (2004) Cerebral venous sinus thrombosis. Eur Radiol 14:215–226

    PubMed  Google Scholar 

  219. Rubin GD (1997) Helical CT angiography of the thoracic aorta. J Thorac Imaging 12:128–149

    PubMed  CAS  Google Scholar 

  220. Safian RD, Textor SC (2001) Renal-artery stenosis. N Engl J Med 344:431–442

    PubMed  CAS  Google Scholar 

  221. Sankhla SK, Gunawardena WJ, Coutinho CM, Jones AP, Keogh AJ (1996) Magnetic resonance angiography in the management of aneurysmal subarachnoid haemorrhage: a study of 51 cases. Neuroradiology 38:724–729

    PubMed  CAS  Google Scholar 

  222. Sawicki PT, Kaiser S, Heinemann L, Frenzel H, Berger M (1991) Prevalence of renal artery stenosis in diabetes mellitus—an autopsy study. J Intern Med 229:489–492

    PubMed  CAS  Google Scholar 

  223. Schellinger PD, Jansen O, Fiebach JB et al. (2000) Feasibility and practicality of MR imaging of stroke in the management of hyperacute cerebral ischemia. AJNR Am J Neuroradiol 21:1184–1189

    PubMed  CAS  Google Scholar 

  224. Schönberg SO, Knopp MV, Bock M et al. (1997) Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR blood flow measurements. Radiology 203:45–53

    Google Scholar 

  225. Schönberg SO, Bock M, Floemer F et al. (1999a) High-resolution pulmonary arterio- and venography using multiple-bolus multiphase 3D-Gd-mRA. J Magn Reson Imaging 10:339–346

    Google Scholar 

  226. Schönberg SO, Bock M, Knopp MV et al. (1999b) Renal arteries: optimization of three-dimensional gadolinium-enhanced MR angiography with bolus-timing-independent fast multiphase acquisition in a single breath hold. Radiology 211:667–679

    Google Scholar 

  227. Schönberg SO, Wunsch C, Knopp MV et al. (1999c) Abdominal aortic aneurysm. Detection of multilevel vascular pathology by time-resolved multiphase 3D gadolinium MR angiography: initial report. Invest Radiol 34:648–659

    Google Scholar 

  228. Schönberg SO, Bock M, Kallinowski F, Just A (2000) Correlation of hemodynamic impact and morphologic degree of renal artery stenosis in a canine model. J Am Soc Nephrol 11:2190–2198

    Google Scholar 

  229. Schönberg SO, Knopp MV, Londy F et al. (2002) Morphologic and functional magnetic resonance imaging of renal artery stenosis: a multireader tricenter study. J Am Soc Nephrol 13:158–169

    Google Scholar 

  230. Schönberg SO, Rieger J, Nittka M, Dietrich O, Johannson LO, Reiser MF (2003a) Renal MR angiography: current debates and developments in imaging of renal artery stenosis. Semin Ultrasound CT MR 24:255–267

    Google Scholar 

  231. Schönberg SO, Aumann S, Just A et al. (2003b) Quantification of renal perfusion abnormalities using an intravascular contrast agent (part 2): Results in animals and humans with renal artery stenosis. Magn Reson Med 49:288–298

    Google Scholar 

  232. Schönberg SO, Rieger J, Weber CH et al. (2005) High-spatial-resolution MR angiography of renal arteries with integrated parallel acquisitions: comparison with digital subtraction angiography and US. Radiology 235:687–698

    Google Scholar 

  233. Schoepf UJ, Costello P (2004) CT angiography for diagnosis of pulmonary embolism: state of the art. Radiology 230:329–337

    PubMed  Google Scholar 

  234. Schuster DP, Kaplan JD, Gauvain K, Welch MJ, Markham J (1995) Measurement of regional pulmonary blood flow with PET. J Nucl Med 36:371–377

    PubMed  CAS  Google Scholar 

  235. Scoble JE, Hamilton G (1990) Atherosclerotic renovascular disease. BMJ 300:1670–1671

    PubMed  CAS  Google Scholar 

  236. Sebastia C, Quiroga S, Boye R, Cantarell C, Fernandez-Planas M, Alvarez A (2001) Helical CT in renal transplantation: normal findings and early and late complications. Radiographics 21:1103–1117

    PubMed  CAS  Google Scholar 

  237. Shariat Razavi I, Stacul F, Cova M et al. (1998) Morpho-functional study of the kidney in patients with kidney disease and liver disease with magnetic resonance. Radiol Med (Torino) 95:72–81

    CAS  Google Scholar 

  238. Sheehy N, MacNally S, Smith CS, Boyle G, Madhavan P, Meaney JF (2005) Contrast-enhanced MR angiography of subclavian steal syndrome: value of the 2D time-of-flight “localizer” sign. AJR Am J Roentgenol 185:1069–1073

    PubMed  Google Scholar 

  239. Slovut DP, Olin JW (2004) Fibromuscular dysplasia. N Engl J Med 350:1862–1871

    PubMed  CAS  Google Scholar 

  240. Smits JH, Bos C, Elgersma OE et al. (2002) Hemodialysis access imaging: comparison of flow-interrupted contrast-enhanced MR angiography and digital subtraction angiography. Radiology 225:829–834

    PubMed  Google Scholar 

  241. Stella A, Gargiulo M, Faggioli GL et al. (1993) Postoperative course of inflammatory abdominal aortic aneurysms. Ann Vasc Surg 7:229–238

    PubMed  CAS  Google Scholar 

  242. Strecker R, Scheffler K, Klisch J et al. (2000) Fast functional MRA using time-resolved projection MR angiography with correlation analysis. Magn Reson Med 43:303–309

    PubMed  CAS  Google Scholar 

  243. Subramaniam M, Mizzi A, Roditi G (2004) Magnetic resonance angiography in potential live renal donors: a joint radiological and surgical evaluation. Clin Radiol 59:335–341

    PubMed  CAS  Google Scholar 

  244. Summers PE, Jarosz JM, Markus H (2001) Mr angiography in cerebrovascular disease. Clin Radiol 56:437–456

    PubMed  CAS  Google Scholar 

  245. Suzuki J, Kodama N (1983) Moyamoya disease—a review. Stroke 14:104–109

    PubMed  CAS  Google Scholar 

  246. Swan JS, Weber DM, Grist TM, Wojtowycz MM, Korosec FR, Mistretta CA (1992) Peripheral MR angiography with variable velocity encoding. Work in progress. Radiology 184:813–817

    PubMed  CAS  Google Scholar 

  247. Tan KT, van Beek EJ, Brown PW, van Delden OM, Tijssen J, Ramsay LE (2002) Magnetic resonance angiography for the diagnosis of renal artery stenosis: a meta-analysis. Clin Radiol 57:617–624

    PubMed  CAS  Google Scholar 

  248. Textor SC (2000) Epidemiology and clinical presentation. Semin Nephrol 20:426–431

    PubMed  CAS  Google Scholar 

  249. Thiene G, Frescura C (1999) Etiology and pathology of aortic arch malformations. In: R NCF (ed) Diagnosis and treatment of aortic diseases. Kluwer, Dordrecht, pp 225–269

    Google Scholar 

  250. Tsuchiya K, Aoki C, Fujikawa A, Hachiya J (2004) Three-dimensional MR digital subtraction angiography using parallel imaging and keyhole data sampling in cerebrovascular diseases: initial experience. Eur Radiol 14:1494–1497

    PubMed  Google Scholar 

  251. Uehara T, Tabuchi M, Kozawa S, Mori E (2001) MR angiographic evaluation of carotid and intracranial arteries in Japanese patients scheduled for coronary artery bypass grafting. Cerebrovasc Dis 11:341–345

    PubMed  CAS  Google Scholar 

  252. Unlu E, Cakir B, Gocer B, Tuncbilek N, Gedikoglu M (2005) The role of contrast-enhanced MR angiography in the assessment of recently ruptured intracranial aneurysms: a comparative study. Neuroradiology 47:780–791

    PubMed  Google Scholar 

  253. Van Grimberge F, Dymarkowski S, Budts W, Bogaert J (2000) Role of magnetic resonance in the diagnosis of subclavian steal syndrome. J Magn Reson Imaging 12:339–342

    PubMed  Google Scholar 

  254. Vasbinder GB, Nelemans PJ, Kessels AG et al. (2004) Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis. Ann Intern Med 141:674–682

    PubMed  Google Scholar 

  255. Vasbinder GB, Nelemans PJ, Kessels AG, Kroon AA, de Leeuw PW, van Engelshoven JM (2001) Diagnostic tests for renal artery stenosis in patients suspected of having renovascular hypertension: a meta-analysis. Ann Intern Med 135:401–411

    PubMed  CAS  Google Scholar 

  256. Vasbinder GBC, Maki JH, Nijenhuis RJ et al. (2002) Motion of the distal renal artery during three-dimensional contrast-enhanced breath-hold MRA. J Magn Reson Imaging 16:685–696

    PubMed  Google Scholar 

  257. Vogl TJ, Juergens M, Balzer JO et al. (1994) Glomus tumors of the skull base: combined use of MR angiography and spin-echo imaging (2002) Radiology 192:103–110

    Google Scholar 

  258. Vosshenrich R, Fischer U Contrast-enhanced MR angiography of abdominal vessels: is there still a role for angiography? Eur Radiol 12:218–230

    Google Scholar 

  259. Waldman GJ, Pattynama PM, Chang PC, Verburgh C, Reiber JH, de Roos A (1996) Magnetic resonance angiography of dialysis access shunts: initial results. Magn Reson Imaging 14:197–200

    PubMed  CAS  Google Scholar 

  260. Wardlaw JM, Chappell FM, Best JJ, Wartolowska K, Berry E (2006) Non-invasive imaging compared with intra-arterial angiography in the diagnosis of symptomatic carotid stenosis: a meta-analysis. Lancet 367:1503–1512

    PubMed  CAS  Google Scholar 

  261. Weber MA, Kroll A, Gunther M et al. (2004) [Noninvasive measurement of relative cerebral blood flow with the blood bolus MRI arterial spin labeling: basic physics and clinical applications]. Radiologe 44:164–173

    PubMed  Google Scholar 

  262. Weckbach S (2006) Comprehensive diabetes imaging with whole body MR imaging at 1.5 and 3.0 T in patients with longstanding diabetes. In:ECR 2Vienna, 259

    Google Scholar 

  263. Wehrli FW, Shimakawa A, Gullberg GT, MacFall JR (1986) Time-of-flight MR flow imaging: selective saturation recovery with gradient refocusing. Radiology 160:781–785

    PubMed  CAS  Google Scholar 

  264. Westphal M, Grzyska U (2000) Clinical significance of pedicle aneurysms on feeding vessels, especially those located in infratentorial arteriovenous malformations. J Neurosurg 92:995–1001

    PubMed  CAS  Google Scholar 

  265. Wetzel S, Bongartz G (1999) MR angiography: supra-aortic vessels. Eur Radiol 9:1277–1284

    PubMed  CAS  Google Scholar 

  266. Wetzel SG, Law M, Lee VS, Cha S, Johnson G, Nelson K (2003) Imaging of the intracranial venous system with a contrast-enhanced volumetric interpolated examination. Eur Radiol 13:1010–1018

    PubMed  Google Scholar 

  267. White CS, Baffa JM, Haney PJ, Pace ME, Campbell AB (1997) MR imaging of congenital anomalies of the thoracic veins (2003) Radiographics 17:595–608

    Google Scholar 

  268. White PM, Wardlaw JM, Lindsay KW, Sloss S, Patel DK, Teasdale EM. The non-invasive detection of intracranial aneurysms: are neuroradiologists any better than other observers? Eur Radiol 13:389–396

    Google Scholar 

  269. Wilcken DE (2003) Overview of inherited metabolic disorders causing cardiovascular disease. J Inherit Metab Dis 26:245–257

    PubMed  CAS  Google Scholar 

  270. Willig DS, Turski PA, Frayne R et al. (1998) Contrast-enhanced 3D MR DSA of the carotid artery bifurcation: preliminary study of comparison with unenhanced 2D and 3D time-of-flight MR angiography. Radiology 208:447–451

    PubMed  CAS  Google Scholar 

  271. Willinek WA, Gieseke J, Conrad R et al. (2002) Randomly segmented central k- space ordering in high-spatial-resolution contrast-enhanced MR angiography of the supra-aortic arteries: initial experience. Radiology 225:583–588

    Google Scholar 

  272. Willinek WA, Born M, Simon B et al. (2003a) Time-of-flight MR angiography: comparison of 3.0-T imaging and 1.5-T imaging—initial experience. Radiology 229:913–920

    PubMed  Google Scholar 

  273. Willinek WA, Gieseke J, von Falkenhausen M, Neuen B, Schild HH, Kuhl CK (2003b) Sensitivity encoding for fast MR imaging of the brain in patients with stroke. Radiology 228:669–675

    PubMed  Google Scholar 

  274. Wilman AH, Riederer SJ, Huston J III, Wald JT, Debbins JP (1998) Arterial phase carotid and vertebral artery imaging in 3D contrast-enhanced MR angiography by combining fluoroscopic triggering with an elliptical centric acquisition order. Magn Reson Med 40:24–35

    PubMed  CAS  Google Scholar 

  275. Winterer JT, Strey C, Wolffram C et al. (2000) Preoperative examination of potential kidney transplantation donors: value of gadolinium-enhanced 3D MR angiography in comparison with DSA and urography. RoFo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 172:449–457

    PubMed  CAS  Google Scholar 

  276. Wong-You-Cheong JJ, Grumbach K, Krebs TL et al. (1998) Torsion of intraperitoneal renal transplants: imaging appearances. AJR Am J Roentgenol 171:1355–1359

    PubMed  CAS  Google Scholar 

  277. Wright LB, Matchett WJ, Cruz CP et al. (2004) Popliteal artery disease: diagnosis and treatment. Radiographics 24:467–479

    PubMed  Google Scholar 

  278. Xu C, Zarins CK, Glagov S (2001) Aneurysmal and occlusive atherosclerosis of the human abdominal aorta. J Vasc Surg 33:91–96

    PubMed  CAS  Google Scholar 

  279. Yamada I, Suzuki S, Matsushima Y (1995) Moyamoya disease: comparison of assessment with MR angiography and MR imaging versus conventional angiography. Radiology 196:211–218

    PubMed  CAS  Google Scholar 

  280. Yamada I, Nakagawa T, Matsushima Y, Shibuya H (2001) High-resolution turbo magnetic resonance angiography for diagnosis of Moyamoya disease. Stroke 32:1825–1831

    PubMed  CAS  Google Scholar 

  281. Yamada N, Takamiya M, Kuribayashi S, Okita Y, Minatoya K, Tanaka R (2000) MRA of the Adamkiewicz artery: a preoperative study for thoracic aortic aneurysm. J Comput Assist Tomogr 24:362–368

    PubMed  CAS  Google Scholar 

  282. Yamamoto T, Ogasawara Y, Kimura A et al. (1996) Blood velocity profiles in the human renal artery by Doppler ultrasound and their relationship to atherosclerosis. Arterioscler Thromb Vasc Biol 16:172–177

    PubMed  CAS  Google Scholar 

  283. Yanaka K, Asakawa H, Matsumaru Y, Kujiraoka Y, Nose T (2004) Diagnosis of vascular compression at the thoracic outlet using magnetic resonance angiography. Eur Neurol 51:122–123

    PubMed  Google Scholar 

  284. Yang CW, Lee SH, Choo SW et al. (1996) Early graft dysfunction due to renal vein compression. Nephron 73:480–481

    PubMed  CAS  Google Scholar 

  285. Yang JJ, Hill MD, Morrish WF et al. (2002) Comparison of pre- and postcontrast 3D time-of-flight MR angiography for the evaluation of distal intracranial branch occlusions in acute ischemic stroke. AJNR Am J Neuroradiol 23:557–567

    PubMed  Google Scholar 

  286. Zaporozhan J, Ley S, Eichinger M, Fink C (2005) Unklarer Befund im Thoraxröntgen. Radiologe 45:644–648

    PubMed  CAS  Google Scholar 

  287. Zeller T, Frank U, Spath M, Roskamm H (2001) Color duplex ultrasound imaging of renal arteries and detection of hemodynamically relevant renal artery stenoses. Ultraschall Med 22:116–121

    PubMed  CAS  Google Scholar 

  288. Zeller T, Frank U, Muller C et al. (2002) Duplex ultrasound for follow-up examination after stent-angioplasty of ostial renal artery stenoses. Ultraschall Med 23:315–319

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Layer, G. et al. (2008). Thorax and Vasculature. In: Reiser, M., Semmler, W., Hricak, H. (eds) Magnetic Resonance Tomography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29355-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-29355-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29354-5

  • Online ISBN: 978-3-540-29355-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics