Skip to main content

Brain, Head, and Neck

  • Chapter
  • 6795 Accesses

Abstract

MRI in neuroradiology has evolved in the last 30 years, becoming faster, more precise, and more specific. The latest additions, including magnetic resonance spectroscopy (MRS), diffusion imaging, diffusion tensor imaging, functional MRI, and dynamic susceptibility contrast perfusion imaging, have expanded the applications for MR imaging. Currently, fluid attenuation inversion recovery (FLAIR) imaging, thin-section 3D volumetric imaging with spoiled gradient techniques, and the others mentioned above permit not only the precise localization of brain lesions, but also the evaluation of their metabolic profile, their location relative to eloquent regions of the cortex and subcortical white matter, and the relative blood volume and permeability of the vasculature that supplies the lesion. Thus, cellular, vascular, functional and anatomic information are obtained in one examination session and are available to treating physicians in their office, operating room, or radiation therapy suite.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alsop DC, McGarvey ML, Maldjian JA, Wang J, Detre JA (2003) Susceptibility contrast and arterial spin label perfusion MRI in cerebrovascular disease. J Neuroimaging 13:17–27

    PubMed  Google Scholar 

  • Ances BM, McGarvey ML, Abrahams JM et al (2004) Continuous arterial spin labeled perfusion magnetic resonance imaging in patients before and after carotid endarterectomy. J Neuroimaging 14:133–138

    PubMed  Google Scholar 

  • Arfanakis K, Haughton VM, Carew JD et al (2002) Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 23:794–802

    PubMed  Google Scholar 

  • Baird A, Warach S (1998) Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab 18:583–609

    PubMed  CAS  Google Scholar 

  • Ballestero J (2001) Essentials of proton magnetic resonance spectroscopy and applications in space-occupying lesions of the brain. Applied Radiology 30:55–63

    Google Scholar 

  • Bammer R, Auer M, Keeling SL et al (2002) Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med 48:128–136

    PubMed  Google Scholar 

  • Barbier EL, Silva AC, Kim SG, Koretsky AP (2001) Perfusion imaging using dynamic arterial spin labeling (DASL). Magn Reson Med 45:1021–1029

    PubMed  CAS  Google Scholar 

  • Barkovich AJ (2000) Pediatric neuroimaging, 3rd edn. Lipincott Williams and Wilkins, Philadelphia, pp 55–61

    Google Scholar 

  • Basser PJ, Mattiello J, Le Bihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin-echo. J Magn Reson 103:247–254

    CAS  Google Scholar 

  • Basser PJ, Pajevic S, Pierpaoli C et al (2002) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632

    Google Scholar 

  • Beaulieu C, de Crespigny A, Tong DC, Moseley DC, Albers GW, Marks MP (1999) Longitudinal magnetic resonance imaging study of perfusion and diffusion in stroke: evolution of lesion volume and correlation with clinical outcome. Ann Neurol 46:568–578

    PubMed  CAS  Google Scholar 

  • Birken DL, Oldendorf WH (1989) N-acetyl-l-aspartic acid: a literature review of a compound prominent in 1h-nmr spectroscopic studies of the brain. Neurosci Biobehav Rev 13:23–31

    PubMed  CAS  Google Scholar 

  • Burtscher IM, Holtas S (2001) Proton MR spectroscopy in clinical routine. J Magn Reson Imaging 13:560–567

    PubMed  CAS  Google Scholar 

  • Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396

    PubMed  CAS  Google Scholar 

  • Cady EB, Lorek A, Penrice J et al (1994) Detection of propan-1,2-diol in the neonatal brain by in vivo proton magnetic resonance spectroscopy. Magn Reson Med 32:764–767

    PubMed  CAS  Google Scholar 

  • Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R (1999) Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 19:701–735

    PubMed  CAS  Google Scholar 

  • Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638

    CAS  Google Scholar 

  • Cecil KM, Jones BV (2001) Magnetic resonance spectroscopy of the pediatric brain. Magn Reson Imaging 12:435–452

    CAS  Google Scholar 

  • Cha S (2003) Perfusion MR imaging: basic principles and clinical applications. Magn Reson Imaging Clin N Am 11:403–413

    PubMed  Google Scholar 

  • Danielsen ER, Ross B (1999) Magnetic resonance spectroscopy diagnosis of neurological disease. Dekker, New York

    Google Scholar 

  • Detre JA, Wang J (2002) Technical aspects and utility of fMRI using BOLD and ASL. Clin Neurophysiol 113:621–634

    PubMed  Google Scholar 

  • Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23:37–45

    PubMed  CAS  Google Scholar 

  • Detre JA, Samuels OB, Alsop DC, Gonzalez-At JB, Kasner SE, Raps EC (1999) Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis. J Magn Reson Imaging 10:870–875

    PubMed  CAS  Google Scholar 

  • Dorenbeck U, Butz B, Schlaier J, Bretschneider T, Schuierer G, Feuerbach S (2003) Diffusion-weighted echo-planar MRI of the brain with calculated ADCs: a useful tool in the differential diagnosis of tumor necrosis from abscess? J Neuroimaging 13:330–338

    PubMed  CAS  Google Scholar 

  • Duhamel G, de Bazelaire C, Alsop DC (2003) Evaluation of systematic quantification errors in velocity-selective arterial spin labeling of the brain. Magn Reson Med 50:145–153

    PubMed  Google Scholar 

  • Ewing JR., Wei L, Knight R, Nagaraja TN, Fenstermacher JD (1999) A direct comparison between MRI arterial spin-tagging and quantitative autoradiography for measured cerebral blood flow in rats with experimental cerebral ischemia. Copenhagen: Brain ‘99, 19th annual meeting 1999, p 595

    Google Scholar 

  • Filippi M, Cercignani M, Inglese M et al (2001) Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 56:304–311

    PubMed  CAS  Google Scholar 

  • Gelderen P van, de Vleeschouwer MHM, DesPres D, Pekar J, van Zijl PCM, Moonen CTW (1994) Water diffusion and acute stroke. Magn Reson Med 31:154–163

    PubMed  Google Scholar 

  • Gonzalez RG, Schaefer PW, Buonanno F et al (1999) Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 h of stroke symptom onset. Radiology 210:155–162

    PubMed  CAS  Google Scholar 

  • Govindaraju V, Basus VJ, Matson GB, Maudsley AA (1998) Measurement of chemical shifts and coupling constants for glutamate and glutamine. Magn Reson Med 39:1011–1013

    PubMed  CAS  Google Scholar 

  • Grandin CB (2003) Assessment of brain perfusion with MRI: methodology and application to acute stroke. Neuroradiology 45:755–766

    PubMed  CAS  Google Scholar 

  • Gujar SK, Maheshwari S, Bjorkman-Burtscher I, Sundgren PC (2005) Magnetic resonance spectroscopy. J Neuro-Ophthalmol 25:217–226

    Google Scholar 

  • Gükel FJ, Brix G, Schmiedek P et al (1996) Cerebrovascular reserve capacity in patients with occlusive cerebrovascular disease: assessment with dynamic susceptibility contrast-enhanced MR imaging and the acetazolamide stimulation test. Radiology 201:405–412

    Google Scholar 

  • Hacke W, Kaste M, Fieschi C et al (1995) Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA 274:1017–1025

    PubMed  CAS  Google Scholar 

  • Hagen T, Bartylla K, Piepgras U (1999) Correlation of regional cerebral blood flow measured by stable xenon CT and perfusion MRI. J Comput Assist Tomogr 23:257–264

    PubMed  CAS  Google Scholar 

  • Hakyemez B, Aksoy U, Yildiz H, Ergin N (2005) Intracranial epidermoid cysts: diffusion-weighted, FLAIR and conventional MR findings. Eur J Radiol 54:214–220

    PubMed  Google Scholar 

  • Harrer JU, Parker GJ, Haroon HA et al (2004) Comparative study of methods for determining vascular permeability and blood volume in human gliomas. J Magn Reson Imaging 20:748–757

    PubMed  Google Scholar 

  • Hasan KM, Parker DL, Alexander AL (2001) Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging 13:769–780

    PubMed  CAS  Google Scholar 

  • Hendrikse J, van der Grond J, Lu H, van Zijl PC, Golay X (2004) Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 35:882–888

    PubMed  Google Scholar 

  • Holmes TM, Petrella JR, Provenzale JM. Distinction between cerebral abscesses and high-grade neoplasms by dynamic susceptibility contrast perfusion MRI. AJR Am J Roentgenol 183:1247–1252

    Google Scholar 

  • Holodny AI, Ollenschlager M (2002) Diffusion imaging in brain tumors. Neuroimaging Clin N Am 12:107–124

    PubMed  Google Scholar 

  • Horska A, Kaufmann WE, Brant LJ, Naidu S, Harris JC, Barker PB (2002) In vivo quantitative proton MRSI study of brain development from childhood to adolescence. J. Magn Reson Imaging 15:137–143

    Google Scholar 

  • Jones SC, Perez-Trepichio AD, Xue M, Furlan AJ, Awad IA (1994) Magnetic resonance diffusion-weighted imaging: sensitivity and apparent diffusion constant in stroke. Acta Neurochir 60:207–210

    CAS  Google Scholar 

  • Kiselev VG (2001) On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 46:1113–1122

    PubMed  CAS  Google Scholar 

  • Kuker W, Nagele T, Schmidt F, Heckl S, Herrlinger U (2004) Diffusion-weighted MRI in herpes simplex encephalitis: a report of three cases. Neuroradiology 46:122–125

    PubMed  CAS  Google Scholar 

  • Kumon Y, Zenke K, Kusunoki K et al (1999) Diagnostic use of isotropic diffusion-weighted MRI in patients with ischaemic stroke: detection of the lesion responsible for the clinical deficit. Neuroradiology 41:777–784

    PubMed  CAS  Google Scholar 

  • Kwong, KK, Chesler, DA, Weisskoff, RM et al (1995) MR perfusion studies with T1 weighted echo planar imaging, Magn Reson Med 34:878–887

    Google Scholar 

  • Lansberg MG, Norbash AM, Marks MP et al (2000) Advantages of adding diffusion-weighted magnetic resonance imaging to conventional magnetic resonance imaging for evaluation of acute stroke. Arch Neurol 57:1311–1316

    PubMed  CAS  Google Scholar 

  • Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR 24:1989–1998

    PubMed  Google Scholar 

  • Levin JM, Kaufman MJ, Ross MH, Mendelson JH, Maas LC, Cohen BM, Renshaw PH (1995) Sequential dynamic susceptibility contrast MR experiments in human brain: residual contrast agent effect, steady state, and hemodynamic perturbation. Magn Reson Med 34:655–663

    PubMed  CAS  Google Scholar 

  • Lin DM, Crawford TO, Barker PB (2003) Proton MR Spectroscopy in the Diagnostic Evaluation of Suspected Mitochondrial Disease, AJNR Am J Neuroradiol:24:33–41

    Google Scholar 

  • Lutsep HL, Albers GW, DeCrespigny A, Kamat GN, Marks MP, Moseley ME (1997) Clinical utility of diffusion-weighted magnetic resonance imaging in the assessment of ischemic stroke. Ann Neurol 41:574–580

    PubMed  CAS  Google Scholar 

  • Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6:731–744

    PubMed  CAS  Google Scholar 

  • Michaelis T, Merboldt KD, Bruhn H, Hanicke W, Frahm J (1993) Absolute concentrations of metabolites in the human brain in-vivo: quantification of localized proton MR spectra. Radiology 197:219–227

    Google Scholar 

  • Mohr JP, Biller J, Hilal SK et al (1995) Magnetic resonance versus computed tomographic imaging in acute stroke. Stroke 26:807–812

    PubMed  CAS  Google Scholar 

  • Moseley M, Cohen Y, Mintorovitch J et al (1990a) Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighred MRI and spectroscopy. Magn Reson Med;14:330–346

    Google Scholar 

  • Moseley M, Kucharczyk J, Mintorovirch J et al (1990b) Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility enhanced MR imaging in cats. AJNR 11:423–429

    PubMed  CAS  Google Scholar 

  • Mukherjee P, McKinstry RC (2006) Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clin N Am 16:19–43

    PubMed  Google Scholar 

  • Mukherjee P (2005) Diffusion tensor imaging and fiber tractography in acute stroke. Neuroimaging Clin N Am 15:655–665

    PubMed  Google Scholar 

  • Neil JJ, Shiran Sl. McKinstry RC et al (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209:57–68

    PubMed  CAS  Google Scholar 

  • NINDS t-PA Stroke Study Group The (1997) Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke 28:2109–2118

    Google Scholar 

  • Oppenheim C, Stanescu R, Dormont D et al (2000) False-negative diffusion-weighted MR findings in acute ischemic stroke. AJNR 21:1434–1440

    PubMed  CAS  Google Scholar 

  • Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen RR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36:715–725

    PubMed  Google Scholar 

  • Østergaard L, Smith DF, Vestergaard-Poulsen P, Hansen SB, Gee AD, Gjedde A, Gyldensted C (1998) Absolute cerebral blood flow and volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography values. J Cereb Blood Flow Metab 18:425–432

    PubMed  Google Scholar 

  • O’Sullivan M, Jones DK, Summers PE et al (2001) Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 57:632–638

    PubMed  CAS  Google Scholar 

  • Pajevic S, Pierpaoli C (1999) Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 42:526–540

    PubMed  CAS  Google Scholar 

  • Papadakis NG, Murrills CD, Hall LD et al (2000) Minimal gradient encoding for robust estimation of diffusion anisotropy. Magn Reson Imaging 18:671–679

    PubMed  CAS  Google Scholar 

  • Parkes LM, Rashid W, Chard DT, Tofts PS (2004) Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med 51:736–743

    PubMed  Google Scholar 

  • Provenzale JR, Engelter ST, Petrella JR, Smith JS, MacFall JR (1999) Use of MR exponential diffusion-weighted images to eradicate T2 shine-through effect. AJR Am J Roentgenol 172:537–539

    PubMed  CAS  Google Scholar 

  • Pu Y, Li QF, Zeng CM et al (2000) Increased detectability of alpha brain glutamate/glutamine in neonatal hypoxic-ischemic encephalopathy. AJNR Am J Neuroradiol 21:203–212

    PubMed  CAS  Google Scholar 

  • Rordorf G, Koroshetz WJ, Copen WA et al (1999) Diffusion- and perfusion-weighted imaging in vasospasm after subarachnoid hemorrhage. Stroke 30:599–605

    PubMed  CAS  Google Scholar 

  • Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    PubMed  CAS  Google Scholar 

  • Ross B, Bluml S (2001) Magnetic resonance spectroscopy of the human brain. Anat Rec 265:54–84

    PubMed  CAS  Google Scholar 

  • Rugg-Gunn FJ, Eriksson SH, Symms MR et al (2002) Diffusion tensor imaging in refractory epilepsy. Lancet 359:1748–1751

    PubMed  Google Scholar 

  • Schellinger PD ,Fiebach JB, Hacke W (2003) Imaging-based decision making in thrombolytic therapy for ischemic stroke: present status. Stroke 34:575–575

    PubMed  Google Scholar 

  • Schepers J, Veldhuis WB, Pauw RJ et al (2004) Comparison of FAIR perfusion kinetics with DSC-MRI and functional histology in a model of transient ischemia. Magn Reson Med 51:312–320

    PubMed  Google Scholar 

  • Shih LC, Saver JL, Alger JR, Starkman S et al (2003) Perfusion-weighted magnetic resonance imaging thresholds identifying core, irreversibly infarcted tissue. Stroke 34:1425–1430

    PubMed  Google Scholar 

  • Silva AC, Kim SG (2003) Perfusion-based functional magnetic resonance imaging. Concepts in Magn Reson Part A 16A:16–27

    Google Scholar 

  • Silverstein RM, Bassler GC, Morrill TC (1981) Spectrometric identification of organic compounds, 4th edn. Wiley, New York, pp 181–247

    Google Scholar 

  • Skare S, Hedehus M, Moseley ME, Li TQ (2000) Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J Magn Reson 147:340–352

    PubMed  CAS  Google Scholar 

  • Speck O, Chang L, DeSilva NM, Ernst T (2000) Perfusion MRI of the human brain with dynamic susceptibility contrast: gradient-echo versus spin-echo techniques. J Magn Reson Imaging 12:381–387

    PubMed  CAS  Google Scholar 

  • St. Lawrence KS, Frank JA, McLaughlin AC (2000) Effect of restricted water exchange on cerebral blood flow values calculated with arterial spin tagging: a theoretical investigation. Magn Reson Med 44:440–449

    PubMed  CAS  Google Scholar 

  • Stejskal EO (1965) Use of spin-echoes in a pulsed magnetic-field gradient to study anisotropic restricted diffusion and flow. J Chem Phys 43:3597–3603

    Google Scholar 

  • Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin-echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    CAS  Google Scholar 

  • Talagala SL, Ye FQ, Ledden PJ, Chesnick S (2004) Whole-brain 3D perfusion MRI at 3.0 T using CASL with a separate labeling coil. Magn Reson Med 52:131–140

    PubMed  Google Scholar 

  • Thomalla GJ, Kucinski T, Schoder V et al (2003) Prediction of malignant middle cerebral artery infarction by early perfusion- and diffusion-weighted magnetic resonance imaging. Stroke 34:1892–1899

    PubMed  Google Scholar 

  • Ulug AM, Beauchamp N, Bryan RN, van Zijl PCM (1997) Absolute quantitation of diffusion constants in human stroke. Stroke 28:483–490

    PubMed  CAS  Google Scholar 

  • Virta A, Barnett A, Pierpaoli C (1999) Visualizing and characterizing white matter fiber structure and architecture in the human pyramidal tract using diffusion tensor MRI. Magn Reson Imaging 17:1121–1133

    PubMed  CAS  Google Scholar 

  • Wang ZJ, Zimmerman RA (1998) Proton MR spectroscopy of pediatric metabolic disorders. Neuroimag Clin N Am 8:781–807

    CAS  Google Scholar 

  • Warach S, Chien D, Li W, Ronthal M, Edelman RR (1992) Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42:1717–1723

    PubMed  CAS  Google Scholar 

  • Warmuth C, Gunther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228:523–532

    PubMed  Google Scholar 

  • Woessner DE (1961) Effects of diffusion in nuclear magnetic resonance spin-echo experiments. J Chem Phys 34:2057–2061

    CAS  Google Scholar 

  • Wolf RL, Alsop DC, McGarvey ML, Maldjian JA, Wang J, Detre JA (2003) Susceptibility contrast and arterial spin label perfusion MRI in cerebrovascular disease. J Neuroimaging 13:17–27

    PubMed  Google Scholar 

  • Wong EC, Buxton RB, Frank LR (1998) Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 39:702–708

    PubMed  CAS  Google Scholar 

  • Wong EC, Cronin M, Wu W-C, Inglis B, Frank LR, Liu TT (2006) Velocity-selective arterial spin labeling. Magn Reson Med 55:1334–1341

    PubMed  Google Scholar 

  • Ye FQ, Mattay VS, Jezzard P, Frank JA, Weinberger DR, McLaughlin AC (1997) Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques. Magn Reson Med 37:226–237

    PubMed  CAS  Google Scholar 

  • Ye FQ, Frank JA, Weinberger DR, McLaughlin AC (2000) Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 44:92–100

    PubMed  CAS  Google Scholar 

  • Young GS, Geschwind MD, Fischbein NJ et al (2005) Diffusion-weighted and fluid-attenuated inversion recovery imaging in Creutzfeldt-Jakob disease: high sensitivity and specificity for diagnosis. AJNR 26:1551–1562

    PubMed  Google Scholar 

  • Zaharchuk G, Ledden PJ, Kwong KK, Reese TG, Rosen BR, Wald LL (1999) Multislice perfusion and perfusion territory imaging in humans with separate label and image coils. Magn Reson Med 41:1093–1098

    PubMed  CAS  Google Scholar 

  • Zimmerman RA, Wang ZJ (1997) The value of proton MR spectroscopy in pediatric metabolic brain disorders. AJNR Am J Neuroradiol 18:1872–1879

    PubMed  CAS  Google Scholar 

  • Alperin N, Sivaramakrishnan A, Lichtor T (2005) Magnetic resonance imaging-based measurements of cerebrospinal fluid and blood flow as indicators of intracranial compliance in patients with Chiari malformation. J Neurosurg 103:46–52

    PubMed  Google Scholar 

  • American Academy of Pediatrics Committee on Drugs (1992) Guidelines for monitoring and management of pediatric patients during and after sedation for diagnostic and therapeutic procedures. Pediatrics 89:1110–1115

    Google Scholar 

  • American Academy of Pediatrics Committee on Drugs (2002) Guidelines for monitoring and management of pediatric patients during and after sedation for diagnostic and therapeutic procedures: addendum. Pediatrics 110:836–838

    Google Scholar 

  • Baker LL, Stevenson DK, Enzmann DR (1988) End-stage periventricular leukomalacia: MR evaluation. Radiology 168:809–815

    PubMed  CAS  Google Scholar 

  • Barkovich AJ (2005) Pediatric neuroimaging. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Barkovich AJ, Chuang SH (1990) Unilateral megalencephaly: correlation of MR imaging and pathologic characteristics. AJNR Am J Neuroradiol 11:523–531

    PubMed  CAS  Google Scholar 

  • Barkovich AJ, Kuziecky RI (2000) Gray matter heterotopia. Neurology 55:1603–1608

    PubMed  CAS  Google Scholar 

  • Barkovich AJ, Quint DJ (1993) Middle interhemispheric fusion: an unusual variant of holoprosencephaly. AJNR Am J Neuroradiol 14:431–440

    PubMed  CAS  Google Scholar 

  • Barkovich AJ, Kjos BO, Jackson DE Jr, Norman D (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180

    PubMed  CAS  Google Scholar 

  • Barkovich AJ, Fram EK, Norman D (1989a) Septo-optic dysplasia: MR imaging. Radiology 171:189–192

    PubMed  CAS  Google Scholar 

  • Barkovich AJ, Kjos BO, Norman D, Edwards MS (1989b) Revised classification of posterior fossa cysts and cystlike malformations based on the results of multiplanar MR imaging. AJR Am J Roentgenol 153:1289–1300

    PubMed  CAS  Google Scholar 

  • Barkovich AJ, Kuzniecky RI, Dobyns WB, Jackson GD, Becker LE, Evrard P (1996) A classification scheme for malformations of cortical development. Neuropediatrics 27:59–63

    PubMed  CAS  Google Scholar 

  • Barkovich AJ, Ferriero DM, Barr RM et al (1998) Microlissencephaly: a heterogeneous malformation of cortical development. Neuropediatrics 29:113–119

    PubMed  CAS  Google Scholar 

  • Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2001a) Classification system for malformations of cortical development: update 2001. Neurology 57:2168–2178

    PubMed  CAS  Google Scholar 

  • Barkovich AJ, Simon EM, Walsh CA (2001b) Callosal agenesis with cyst: a better understanding and new classification. Neurology 56:220–227

    PubMed  CAS  Google Scholar 

  • Barkovich AJ, Westmark KD, Bedi HS, Partridge JC, Ferriero DM, Vigneron DB (2001c) Proton spectroscopy and diffusion imaging on the first day of life after perinatal asphyxia: preliminary report. AJNR Am J Neuroradiol 22:1786–1794

    PubMed  CAS  Google Scholar 

  • Bernal OG, Lenn N (2000) Multiple cranial nerve enhancement in early infantile Krabbe’s disease. Neurology 54:2348–2349

    PubMed  CAS  Google Scholar 

  • Eichler FS, Barker PB, Cox C et al (2002) Proton MR spectroscopic imaging predicts lesion progression on MRI in X-linked adrenoleukodystrophy. Neurology 58:901–907

    PubMed  CAS  Google Scholar 

  • Felderhoff-Mueser U, Rutherford MA, Squier WV et al (1999) Relationship between MR imaging and histopathologic findings of the brain in extremely sick preterm infants. AJNR Am J Neuroradiol 20:1349–1357

    PubMed  CAS  Google Scholar 

  • Filippi CG, Lin DD, Tsiouris AJ et al (2003) Diffusion-tensor MR imaging in children with developmental delay: preliminary findings. Radiology 229:44–50

    PubMed  Google Scholar 

  • Fischbein NJ, Barkovich AJ, Wu Y, Berg BO (1998) Sturge-Weber syndrome with no leptomeningeal enhancement on MRI. Neuroradiology 40:177–180

    PubMed  CAS  Google Scholar 

  • Goebel HH, Wisniewski KE (2004) Current state of clinical and morphological features in human NCL. Brain Pathol 14:61–69

    PubMed  CAS  Google Scholar 

  • Govaert P, Lequin M, Swarte R et al (2003) Changes in globus pallidus with (pre)term kernicterus. Pediatrics 112:1256–1263

    PubMed  Google Scholar 

  • Granata T, Freri E, Caccia C, Setola V, Taroni F, Battaglia G (2005) Schizencephaly: clinical spectrum, epilepsy, and pathogenesis. J Child Neurol 20:313–318

    PubMed  Google Scholar 

  • Guerrini R, Barkovich AJ, Sztriha L, Dobyns WB (2000) Bilateral frontal polymicrogyria: a newly recognized brain malformation syndrome. Neurology 54:909–913

    PubMed  CAS  Google Scholar 

  • Hayflick SJ, Westaway SK, Levinson B et al (2003) Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 348:33–40

    PubMed  CAS  Google Scholar 

  • Kim TS, Kim IO, Kim WS et al (1997) MR of childhood metachromatic leukodystrophy. AJNR Am J Neuroradiol 18:733–738

    PubMed  CAS  Google Scholar 

  • Kim SK, Na DG, Byun HS et al (2000) Focal cortical dysplasia: comparison of MRI and FDG-PET. J Comput Assist Tomogr 24:296–302

    PubMed  CAS  Google Scholar 

  • Knaap MS van der, Valk J (1995) Magnetic resonance of myelin, myelination, and myelin disorders. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Knaap MS van der, Smit LM, Barth PG et al (1997) Magnetic resonance imaging in classification of congenital muscular dystrophies with brain abnormalities. Ann Neurol 42:50–59

    PubMed  Google Scholar 

  • Knaap MS van der, Breiter SN, Naidu S, Hart AA, Valk J (1999) Defining and categorizing leukoencephalopathies of unknown origin: MR imaging approach. Radiology 213:121–133

    PubMed  Google Scholar 

  • Kumandas S, Akcakus M, Coskun A, Gumus H (2004) Joubert syndrome: review and report of seven new cases. Eur J Neurol 11:505–510

    PubMed  CAS  Google Scholar 

  • Kuzniecky R, Andermann F, Guerrini R (1993) Congenital bilateral perisylvian syndrome: study of 31 patients. The CBPS Multicenter Collaborative Study. Lancet 341:608–612

    PubMed  CAS  Google Scholar 

  • Latif F, Tory K, Gnarra J et al (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260:1317–1320

    PubMed  CAS  Google Scholar 

  • Lee SK, Mori S, Kim DJ, Kim SY, Kim DI (2004) Diffusion tensor MR imaging visualizes the altered hemispheric fiber connection in callosal dysgenesis. AJNR Am J Neuroradiol 2004; 25:25–28

    CAS  Google Scholar 

  • Leventer RJ, Pilz DT, Matsumoto N, Ledbetter DH, Dobyns WB (2000) Lissencephaly and subcortical band heterotopia: molecular basis and diagnosis. Mol Med Today 6:277–284

    PubMed  CAS  Google Scholar 

  • Mackay MT, Becker LE, Chuang SH et al (2003) Malformations of cortical development with balloon cells: clinical and radiologic correlates. Neurology 60:580–587

    PubMed  CAS  Google Scholar 

  • Mercuri E, He J, Curati WL, Dubowitz LM, Cowan FM, Bydder GM (1997) Cerebellar infarction and atrophy in infants and children with a history of premature birth. Pediatr Radiol 27:139–143

    PubMed  CAS  Google Scholar 

  • Mikulis DJ, Diaz O, Egglin TK, Sanchez R (1992) Variance of the position of the cerebellar tonsils with age: preliminary report. Radiology 183:725–728

    PubMed  CAS  Google Scholar 

  • Mukherji SK, Albernaz VS, Lo WW et al (1997) Papillary endolymphatic sac tumors: CT, MR imaging, and angiographic findings in 20 patients. Radiology 202:801–808

    PubMed  CAS  Google Scholar 

  • Naidich TP, Altman NR, Braffman BH, McLone DG, Zimmerman RA (1992) Cephaloceles and related malformations. AJNR Am J Neuroradiol 13:655–690

    PubMed  CAS  Google Scholar 

  • Perez-Nunez A, Lagares A, Benitez J et al (2004) Lhermitte-Duclos disease and Cowden disease: clinical and genetic study in five patients with Lhermitte-Duclos disease and literature review. Acta Neurochir (Wien) 146:679–690

    CAS  Google Scholar 

  • Roach ES, Gomez MR, Northrup H (1998) Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J Child Neurol 13:624–628

    PubMed  CAS  Google Scholar 

  • Roessler E, Muenke M (1998) Holoprosencephaly: a paradigm for the complex genetics of brain development. J Inherit Metab Dis 21:481–497

    PubMed  CAS  Google Scholar 

  • Rosser T (2003) Aicardi syndrome. Arch Neurol 60:1471–1473

    PubMed  Google Scholar 

  • Schiffmann R, van der Knaap MS (2004) The latest on leukodystrophies. Curr Opin Neurol 17:187–192

    PubMed  CAS  Google Scholar 

  • Shepherd CW, Houser OW, Gomez MR (1995) MR findings in tuberous sclerosis complex and correlation with seizure development and mental impairment. AJNR Am J Neuroradiol 16:149–155

    PubMed  CAS  Google Scholar 

  • Takanashi J, Sugita K, Fujii K, Niimi H (1995) MR evaluation of tuberous sclerosis: increased sensitivity with fluid-attenuated inversion recovery and relation to severity of seizures and mental retardation. AJNR Am J Neuroradiol 16:1923–1928

    PubMed  CAS  Google Scholar 

  • Truwit CL, Barkovich AJ (1990) Pathogenesis of intracranial lipoma: an MR study in 42 patients. AJR Am J Roentgenol 155:855–864; discussion, p 865

    PubMed  CAS  Google Scholar 

  • US Department of Health and Human Services, National Institutes of Health (1988) Consensus Development Conference. Neurofibromatosis. Conference statement. Arch Neurol 45:575–578

    Google Scholar 

  • Abrey LE, Batchelor TT, Ferreri AJ et al (2005) Report of an international workshop to standardize baseline evaluation and response criteria for primary CNS lymphoma. J Clin Oncol 23:5034–5043

    PubMed  Google Scholar 

  • Aguzzi A, Brandner S, Paulus W (2000) Choroid plexus tumours. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 84–86

    Google Scholar 

  • Akiyama M, Sakai H, Onoue H, Miyazaki Y, AbeT (2004) Imaging intracranial haemangiopericytoma: study of seven cases. Neuroradiology 46:194–197

    PubMed  CAS  Google Scholar 

  • Alger JR, Frank JA, Bizzi A et al (1990) Metabolism of human gliomas: assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PET. Radiology 177:633–641

    PubMed  CAS  Google Scholar 

  • Alvord EC, Lofton S (1988) Gliomas of the optic nerve or chiasm: outcome bypatients sage, tumor site, and treatment. Neurosurgery 68:85–98

    Google Scholar 

  • American Cancer Society (2007) Cancer facts and figs. 2007. American Cancer Society, Atlanta

    Google Scholar 

  • Ariai S, Koerbel A, Bornemann A, Morgala M, Tatagiba M (2005) Cerebellopontine angle arachnoid cyst harbouring ectopic neuroglia. Pediatr Neurosurg 41:220–223

    PubMed  Google Scholar 

  • Arienti VM, Botturi A, Boiardi A, Broggi G, Collice M. Fariselli L, Zanni D, Botturi M (2001) Adult brain low-grade astrocytomas: suvival after surgery and radiotherapy. Neurol Sci 22:233–238

    PubMed  CAS  Google Scholar 

  • Artigas J, Cervos-Navarro J, Iglesias JR, Ebhardt G (1985) Gliomatosis cerebri: clinical and histological findings. Clin Neuropathol 4:135–148

    PubMed  CAS  Google Scholar 

  • Asa SL, Ezzat S (1998) The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev 19:798–827

    PubMed  CAS  Google Scholar 

  • Ashkan K, Rose P, Walter P (2002) Cystic meningioma: challenges in the diagnosis. Br J Neurosurg 16:72–73

    PubMed  CAS  Google Scholar 

  • Atlas SW (ed) (1996) Magnetic resonance of the brain and spine, 2nd edn. Lippincott-Raven, Philadelphia, pp 894–898

    Google Scholar 

  • Atlas SW, Grossman RI, Hackney DB et al (1988) Ca1cified intracraniallesions: detection with gradient-echo-acquisition rapid MR imaging. AINR Am I Neuroradiol 9:253–259

    Google Scholar 

  • Bampoe J, Bauman G, Cairncross J (1999) Adult low-grade gliomas: natural history, prognostic factors and timing of treatment. In: Rock J, Rosenblum M, Shaw E, Cairncross J (eds) The practical management of low-grade primary brain tumors. Lippincott Williams & Wilkins, Philadelphia, pp 135–148

    Google Scholar 

  • Barbier EL, Lamalle L, Decorps M (2001) Methodology of brain perfusion imaging. J Magn Reson Imaging 13:496–520

    PubMed  CAS  Google Scholar 

  • Bart J, Groen HJ, Hendrikse NH et al (2000) The blood–brain barrier and oncology: new insights into function and modulation. Cancer Treat Rev 26:449–462

    PubMed  CAS  Google Scholar 

  • Bartynski WS, Lin L (1997) Dynamic and conventional spin-echo MR of pituitary microlesions. Am J Neuroradiol 18:965–972

    PubMed  CAS  Google Scholar 

  • Ba-Ssalamah A, Nobauer-Huhmann IM, Pinker K et al (2003) Effect of contrast dose and field strength in the magnetic resonance detection of brain metastases. Invest Radiol 38:415–422

    PubMed  Google Scholar 

  • Becker LE, Cruz-Sanchez FF (2000) Ependymoblastoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 127–128

    Google Scholar 

  • Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY (2003) Primary brain tumours in adults. Lancet 361:323–331

    PubMed  Google Scholar 

  • Beni-Adani L, Gomori M, Spektor S, Constantini S (2000) Cyst wall enhancement in pilocytic astrocytoma: neoplastic or reactive phenomenon. Pediatr Neurosurg 32:234–249

    PubMed  CAS  Google Scholar 

  • Bent MJ van den (2004) Management of metastatic (parenchymal, leptomeningeal, and epidural) lesions. Curr Opin Oncol 16:309–313

    PubMed  Google Scholar 

  • Bisese J (1992) MRI of cranial metastasis. Sem Ultrasound CT MR 13:473–483

    CAS  Google Scholar 

  • Black PM (1993) Meningiomas. Neurosurgery 32:643–657

    PubMed  CAS  Google Scholar 

  • Böhling T, Plate KH, Haltia MJ et al (2000) Von Hippel-Lindau disease and capillary haemangioblastoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 223–226

    Google Scholar 

  • Bolen J, Lipper M, Caccamo D (1989) Intraventricular central neurocytoma: CT and MR findings. J Comput Assist Tomogr 13:495–497

    PubMed  Google Scholar 

  • Bonneville F, Cattin F, Marsot-Dupuch K, Dormont D, Bonneville JF, Chiras J (2006) T1 signal hyperintensity in the sellar region: spectrum of findings. Radiographics 26:93–113

    PubMed  Google Scholar 

  • Bourgouin PM, Tampieri D, Grahovac SZ, Leger C, Del Carpio R, Melancon D (1992) CT and MR imaging findings in adults with cerebellar medulloblastoma: comparison with findings in children. AJR Am J Roentgenol 159:609–612

    PubMed  CAS  Google Scholar 

  • Brant-Zawadzki M, Norman D, Newton TH et al (1984) Magnetic resonance of the brain: the optimal screening technique. Radiology 152:71–77

    PubMed  CAS  Google Scholar 

  • Brix G, Semmler W, Port R et al (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628

    PubMed  CAS  Google Scholar 

  • Burger PC, Scheithauer BW (1994) Atlas of tumor pathology, 3rd series, fascicle 10: tumors of the central nervous system. Armed Forces Institute of Pathology, Washington, D.C.

    Google Scholar 

  • Burger PC, Breiter SN, Fisher PG (1996) Pilocytic and fibrillary astrocytomas of the brain stem: a comparative clinical, radiological, and pathological study (Abstr). J Neuropathol Exp Neurol 55:640

    Google Scholar 

  • Burger PC, Scheithauer BW, Paulus W et al (2000) Pilocytic astrocytoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 45–51

    Google Scholar 

  • Byrne TN (1994) Imaging of gliomas. Semin Oncol 21:162–171

    PubMed  CAS  Google Scholar 

  • Cappabianca P, Cirillo S, Alfieri A, D’Amico A, Maiuri F, Mariniello G, Caranci F, de Divitiis E (1999) Pituitary macroadenoma and diaphragma sellae meningioma: differential diagnosis on MRI. Neuroradiology 41:22–26

    PubMed  CAS  Google Scholar 

  • Castillo M, Green C, Kwock L et al (1995) Proton MR spectroscopy in patients with neurofibromatosis type 1: evaluation of hamartomas and clinical correlation. AJNR Am J Neuroradiol 16:141–147

    PubMed  CAS  Google Scholar 

  • Cavenee WK, Furnari FB, Nagane M et al (2000) Diffusely infiltrating astrocytomas. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 10–21

    Google Scholar 

  • Cha S, Knopp EA, Johnson G et al (2000) Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. AJNR Am J Neuroradiol 21:881–890

    PubMed  CAS  Google Scholar 

  • Cha S, Knopp EA, Johnson G et al (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223:11–29

    PubMed  Google Scholar 

  • Chang KH, Ra DG, Han MH et al (1994) Contrast enhancement of brain tumors at different MR field strengths: comparison of 0.5 T and 2.0 T. AJNR Am J Neuroradiol 15:1413–1419

    PubMed  CAS  Google Scholar 

  • Charbel FT, Hyun H, Misra M, Gueryikian S, Mafee RF (1999) Juxtaorbital en plaque meningiomas. Report of four cases and review of literature. Radiol Clin North Am 37:89–100

    PubMed  CAS  Google Scholar 

  • Chawla A, Emmanuel JV, Seow WT, Lou J, Teo HE, Lim CC (2007) Pediatric PNET: pre-surgical MRI features. Clin Radiol 62:43–52

    PubMed  CAS  Google Scholar 

  • Chen S, Ikawa F, Kurisu K, Arita K, Takaba J, Kanou Y (2001) Quantitative MR evaluation of intracranial epidermoid tumors by fast fluid-attenuated inversion recovery imaging and echo-planar diffusion-weighted imaging. AJNR Am J Neuroradiol 22:1089–1096

    PubMed  CAS  Google Scholar 

  • Chong BW, Newton TH (1993) Hypothalamic and pituitary pathology. Radiol Clin North Am 31:1147–1153

    PubMed  CAS  Google Scholar 

  • Choyke PL, Dwyer AJ, Knopp MV (2003) Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 17:509–520

    PubMed  Google Scholar 

  • Cohan P, Foulad A, Esposito F, Martin NA, Kelly DF (2004) Symptomatic Rathke’s cleft cysts: a report of 24 cases. J Endocrinol Invest 27:943–948

    PubMed  CAS  Google Scholar 

  • Colosimo C, Ruscalleda J, Korves M et al (2001) Detection of intracranial metastases: a multi-center, intra-patient comparison of gadobenate dimeglumine-enhanced MRI with routinely used contrast agents at equal dose. Invest Radiol 36:72–81

    PubMed  CAS  Google Scholar 

  • Daumas-Duport C, Pietsch T, Lantos PL (2000) Dysembryoplastic neuroepithelial tumour. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 103–106

    Google Scholar 

  • David KF, Casey ATH, Hayward RD, Harkness WFJ, Phipps K, Wade AM (1997) Medulloblastoma: is the 5-year survival rate improving? A review of 80 cases from a single institution. J Neurosurg 86:13–21

    PubMed  CAS  Google Scholar 

  • Davis PC, Hudgin PA, Peterman SB, Hoffman JC Jr (1991) Diagnosis of cerebral metastases: double-dose delayed CT vs contrast enhanced MR imaging. Am J Neuroradiol 12:293–300

    PubMed  CAS  Google Scholar 

  • De Coene B, Hajnal JV, Gatehouse P et al 1992MR of the brain using fluid-attenuated inversion recovery (FLAIR) pulse sequences. Am J Neuroradiol 13:1555–1564

    Google Scholar 

  • Dechambre S, Duprez T, Lecouvet F, Raftopoulos C, Gosnard G (1999) Diffusion-weighted MRI postoperative assessment of an epidermoid tumor in the cerebellopontine angle. Neuroradiology 41:829–831

    PubMed  CAS  Google Scholar 

  • Delorme S, Weber MA (2006) Applications of MRS in the evaluation of focal malignant brain lesions. Cancer Imaging 6:95–99

    PubMed  CAS  Google Scholar 

  • Demaerel P, Johannik K, van Hecke P et al (1991) Localized 1H NMR spectroscopy in fifty cases of newly diagnosed intracranial tumors. J Comput Assist Tomogr 15:67–76

    PubMed  CAS  Google Scholar 

  • Demeule M, Regina A, Jodoin J et al (2002) Drug transport to the brain: key roles for the efflux pump P-glycoprotein in the blood–brain barrier. Vascul Pharmacol 38:339–348

    PubMed  CAS  Google Scholar 

  • Dowling C, Bollen AW, Noworolski SM et al (2001) Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am J Neuroradiol 22:604–612

    PubMed  CAS  Google Scholar 

  • Dunn J Jr, Kernohan JW (1956) Gliomatosis cerebri. Arch Pathol 64:82–91

    Google Scholar 

  • Earnest F IV, Kelly PJ, Scheithauer BW et al (1988) Cerebral astrocytomas: histopathologic correlation of MR imaging and CT contrast enhance­ment with stereotactic biopsy. Radiology 166:823–827

    PubMed  Google Scholar 

  • Elster AD (1993) Modern imaging of the pituitary. Radiology 187:1–14

    PubMed  CAS  Google Scholar 

  • Elster AD (1997) How much contrast is enough? Dependence of enhancement on field strength and MR pulse sequence. Eur Radiol 7:276–280

    PubMed  Google Scholar 

  • Elster AD, Challa VR, Gilbert TH, Richardson DN, Contento JC (1989) Meningiomas: MR and histopathologic features. Radiology 170:857–862

    PubMed  CAS  Google Scholar 

  • Erickson BJ, Campeau NG, Schreiner SA et al (2002) Triple-dose contrast/magnetization transfer suppressed imaging of “non-enhancing” brain gliomas. J Neurooncol 60:25–29

    PubMed  Google Scholar 

  • Essig M, Hawighorst H, Schönberg SO et al (1998) Fast fluid-attenuated inversion-recovery (FLAIR) MR imaging in the assessment of intra-axial brain tumors. J Magn Reson Imag 8:789–798

    CAS  Google Scholar 

  • Essig M, Schönberg SO, Hawighorst H et al (1999) Cerebral gliomas and metastases: Assessment with contrast enhanced fast fluid-attenuated inversion-recovery MR imaging. Radiology 210:551–557

    PubMed  CAS  Google Scholar 

  • Essig M, Waschkies M, Wenz F et al (2003) Assessment of brain metastases with dynamic susceptibility-weighted contrast-enhanced MR imaging: initial results. Radiology 228:193–199

    PubMed  Google Scholar 

  • Ezzat S, Asa SL, Couldwell WT et al (2004) The prevalence of pituitary adenomas: a systematic review. Cancer 101:613–619

    PubMed  Google Scholar 

  • Fedi M, Anne Mitchell L, Kalnins RM et al (2004) Glioneuronal tumours in neurofibromatosis type 1: MRI-pathological study. J Clin Neurosci 11:745–747

    PubMed  Google Scholar 

  • Figarella-Branger D, Soylemezoglu F, Kleihues P et al (2000) Central neurocytoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 107–109

    Google Scholar 

  • Filippi CG, Edgar MA, Ulu AM et al (2001) Appearance of meningiomas on diffusion-weighted images: correlating diffusion constants with histopathologic findings. AJNR Am J Neuroradiol 22:65–72

    PubMed  CAS  Google Scholar 

  • Fine HA, Mayer RJ (1993) Primary central nervous system lymphoma. Ann Intern Med 119:1093–104

    PubMed  CAS  Google Scholar 

  • Forsting M, Albert FK, Kunze S, Adams HP, Zenner D, Sartor K (1993) Extirpation of glioblastomas: MR and CT follow-up of residual tumor and regrowth patterns. Am J Neuroradiol 14:77–87

    PubMed  CAS  Google Scholar 

  • Fuss M, Wenz F, Essig M et al (2001) Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy. Int J Radiat Oncol Biol Phys 51:478–482

    PubMed  CAS  Google Scholar 

  • Galanaud D, Nicoli F, Chinot O, Confort-Gouny S, Figarella-Branger D, Roche P, Fuentes S, Le Fur Y, Ranjeva JP, Cozzone PJ (2006) Noninvasive diagnostic assessment of brain tumors using combined in vivo MR imaging and spectroscopy. Magn Reson Med 55:1236–1245

    PubMed  CAS  Google Scholar 

  • Gao PY, Osborn AG, Smirniotopoulos JG, Harris CP (1992) Radiologic-pathologic correlation. Epidermoid tumor of the cerebellopontine angle. AJNR Am J Neuroradiol 13:863–872

    PubMed  CAS  Google Scholar 

  • Gauvain KM, McKinstry RC, Mukherjee P et al (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR Am J Roentgenol 177:449–454

    PubMed  CAS  Google Scholar 

  • Gelabert-Gonzalez M (2004) Intracranial arachnoid cysts. Rev Neurol 39:1161–1166

    PubMed  CAS  Google Scholar 

  • Giangaspero F, Bigner SH, Kleihues P, Pietsch T, Trojanowski JQ (2000) Medulloblastoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 129–137

    Google Scholar 

  • Giesel FL, Bischoff H, von Tengg-Kobligk H et al (2006) Dynamic contrast-enhanced MRI of malignant pleural mesothelioma: a feasibility study of noninvasive assessment, therapeutic follow-up, and possible predictor of improved outcome. Chest 129:1570–1576

    PubMed  Google Scholar 

  • Graif M, Bydder GM, Steiner RE et al (1985) Contrast-enhanced MR imag­ing of malignant brain tumors. AINR Am I Neuroradiol 6:855–862

    CAS  Google Scholar 

  • Groothuis DR (2000) The blood–brain and blood–tumor barriers: a review of strategies for increasing drug delivery. Neurooncol 2:45–59

    CAS  Google Scholar 

  • Gururangan S, Friedman HS (2002) Innovations in design and delivery of chemotherapy for brain tumors. Neuroimaging Clin N Am 12:583–597

    PubMed  Google Scholar 

  • Hagen T, Kujat C, Donauer E, Piepgras U (1994) Neuroradiological aspects of intracranial epidermoids. Radiologe 34:639–647

    PubMed  CAS  Google Scholar 

  • Hall WA, Luciano MG, Doppman JL et al (1994) Pituitary magnetic resonance imaging in normal human volunteers: occult adenomas in the general population. Ann Intern Med 120:817–820

    PubMed  CAS  Google Scholar 

  • Hammound MA, Sawaya R, Shi W, Thall PF, Leeds NE (1996) Prognostic significance of preoperative MRI scans in glioblastoma multiforme. J Neurooncol 27:65–73

    Google Scholar 

  • Hardy J (1973) Transsphenoidal surgery of hypersecreting pituitary tumors. In: Kohler PO, Ross GT (eds) Diagnosis and treatment of pituitary tumors: proceedings of a conference sponsored jointly by the National Institute of Child Health and Human Development and the National Cancer Institute, 15–17 January 1973, Bethesda, Md. Excerpta medica, Amsterdam, pp 179–198

    Google Scholar 

  • Hartmann M, Jansen O, Heiland S, Sommer C, Mönkel K, Sartor K (2001) Restricted diffusion within ring enhancement is not pathognomonic for brain abscess. AJNR Am J Neuroradiol 22:1738–1742

    PubMed  CAS  Google Scholar 

  • Hartmann M, Heiland S, Harting I et al (2003) Distinguishing of primary cerebral lymphoma from high-grade glioma with perfusion-weighted magnetic resonance imaging. Neurosci Lett 338:119–122

    PubMed  CAS  Google Scholar 

  • Haustein J, Laniado M, Niendorf HP et al (1992) Administration of gadopentetate dimeglumine in MR imaging of intracranial tumors: dosage and field strength. AJNR Am J Neuroradiol 13:1199–1206

    PubMed  CAS  Google Scholar 

  • Hawighorst H, Engenhart R, Knopp MV et al (1997) Intracranial meningiomas: time- and dose-dependent effects of irradiation on tumor microcirculation monitored by dynamic MR imaging. Magn Reson Imaging 15:423–432

    PubMed  CAS  Google Scholar 

  • Hawighorst H, Knopp MV, Debus J et al (1998) Pharmacokinetic MRI for assessment of malignant glioma response to stereotactic radiotherapy: initial results. J Magn Reson Imaging 8:783–788

    PubMed  CAS  Google Scholar 

  • Ho VB, Smirniotopoulos JG, Murphy FM et al (1992) Radiologic-pathologic correlation: hemangioblastoma. AJNR Am J Neuroradiol 13:1343–1352

    PubMed  CAS  Google Scholar 

  • Hoang-Xuan K, Capelle L, Kujas M et al (2004) Temozolomide as initial treatment for adults with low-grade oligodendrogliomas or oligoastrocytomas and correlation with chromosome 1p deletions. J Clin Oncol 22:3133–3138

    PubMed  CAS  Google Scholar 

  • Hoeffel C, Boukobza M, Polivka M et al (1995) MR manifestations of subependymomas. AJNR Am J Neuroradiol 16:2121–2129

    PubMed  CAS  Google Scholar 

  • Holland BA, Kucharcyzk W, Brant-Zawadzki M et al (1985) MR imaging of ca1cified intracraniallesions. Radiology 157:353–356

    PubMed  CAS  Google Scholar 

  • Holodny AI, Nusbaum AO, Festa S et al (1999) Correlation between the degree of contrast enhancement and the volume of peritumoral edema in meningiomas and malignant gliomas. Neuroradiology 41:820–825

    PubMed  CAS  Google Scholar 

  • Hylton N (2006) Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol 24:3293–3298

    PubMed  CAS  Google Scholar 

  • Jääskeläinen J, Serve A, Haltia M, Wahlstrom T, Valtronen S (1985) Intracranial hemangiopericytoma: radiology, surgery, radiotherapy and outcome in 21 patients. Surg Neurol 23:227–236

    PubMed  Google Scholar 

  • Jääskeläinen J, Louis DN, Paulus W et al (2000) Haemangiopericytoma. I In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 190–192

    Google Scholar 

  • Jackson A, Panizza B, Hughes D, Reid H (1992) Primary choroid plexus papilloma of the cerebellopontine angle: magnetic resonance imaging, computed tomographic and angiographic appearances. Br J Radiol 65:754–757

    PubMed  CAS  Google Scholar 

  • Jager L, Reiser M (2001) CT and MR imaging of the normal and pathologic conditions of the facial nerve. Eur J Radiol Nov 40:133–146

    CAS  Google Scholar 

  • Jellinger K, Chou P, Paulus W (2000) Melanocytic lesions. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 193–195

    Google Scholar 

  • Jeyapalan S, Batchelor T (2000) Diagnostic evaluation of neurologic metastases. Cancer Invest 18:381–394

    PubMed  CAS  Google Scholar 

  • Johnsen De, Woodruff WW, Allen IS, Cera PJ, Funkhouser GR, Coleman LL (1991) MR imaging of the sellar and juxtasellar regions. Radiographics 11:727–758

    PubMed  CAS  Google Scholar 

  • Johnson BA, Fram EK, Johnson PC, Jacobowitz R (1997) The variable MR appearance of primary lymphoma of the central nervous system: comparison with histopathologic features. AJNR Am J Neuroradiol 18:563–572

    PubMed  CAS  Google Scholar 

  • Johnson JD, Young B (1996) Demographics of brain metastasis. Neurosurg Clin North Am 7:337–344

    CAS  Google Scholar 

  • Jones AP, Gunawardena WJ, Coutinho CM (2001) 1H MR spectroscopy evidence for the varied nature of asymptotic focal brain lesions in neurofibromatosis type 1. Neuroradiology 43:62–67

    PubMed  CAS  Google Scholar 

  • Kazner E, Wende S, Grumme T et al (1989) Computed tomography and magnetic resonance tomography of intracranial tumours, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Keene DL, Jimenez C, Hsu-E (1999) MRI diagnosis of gliomatosis cerebri. Pediatr Neurol 20:148–151

    PubMed  CAS  Google Scholar 

  • Kemper EM, Boogerd W, Thuis I et al (2004) Modulation of the blood–brain barrier in oncology: therapeutic opportunities for the treatment of brain tumours? Cancer Treat Rev 30:415–423

    PubMed  Google Scholar 

  • Kepes JJ, Louis DN, Giannini C et al (2000) Pleomorphic xanthoastrocytoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 52–54

    Google Scholar 

  • Kido G, Wright JL, Merchant RE (1991) Acute effects of human recombinant tumor necrosis factor-alpha on the cerebral vasculature of the rat in both normal brain and in an experimental glioma model. J Neurooncol 10:95–109

    PubMed  CAS  Google Scholar 

  • Kitange GJ, Smith JS, Jenkins RB (2001) Genetic alterations and chemotherapeutic response in human diffuse gliomas. Expert Rev Anticancer Ther 1:595–605

    PubMed  CAS  Google Scholar 

  • Kitange GJ, Templeton KL, Jenkins RB (2003a) Recent advances in the molecular genetics of primary gliomas. Curr Opin Oncol 15:197–203

    PubMed  CAS  Google Scholar 

  • Kitange GJ, Templeton KL, Jenkins RB (2003b) Recent advances in the molecular genetics of primary gliomas. Curr Opin Oncol 15:197–203

    PubMed  CAS  Google Scholar 

  • Kleihues P, Burger PC, Scheithauer BW (1993) The new WHO classification of brain tumours. Brain Pathology 3:255–268

    PubMed  CAS  Google Scholar 

  • Kleihues P, Burger PC, Collins VP et al (2000a) Glioblastoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 29–39

    Google Scholar 

  • Kleihues P, Davis RL, Coons SW et al (2000b) Anaplastic astrocytoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 27–28

    Google Scholar 

  • Kleihues P, Davis RL, Ohgaki H et al (2000c) Diffuse astrocytoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 22–26

    Google Scholar 

  • Kleihues P, Ohgeki H (2001) Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol 52:181–188

    Google Scholar 

  • Knopp MV, Giesel FL, Marcos H et al (2001) Dynamic contrast-enhanced magnetic resonance imaging in oncology. Top Magn Reson Imaging 12:301–308

    PubMed  CAS  Google Scholar 

  • Knopp MV, Balzer T, Esser M et al (2006) Assessment of utilization and pharmacovigilance based on spontaneous adverse event reporting of gadopentetate dimeglumine as a magnetic resonance contrast agent after 45 million administrations and 15 years of clinical use. Invest Radiol 41:491–499

    PubMed  Google Scholar 

  • Koci TM, Chiang F, Mehringer CM et al (1993) Adult cerebellar medulloblastoma: imaging features with emphasis on MR findings. AJNR Am J Neuroradiol 14:929–939

    PubMed  CAS  Google Scholar 

  • Koeller KK, Alamo L, Adair CF, Smirniotopoulos JG (1999) Congenital cystic masses of the neck: radiologic-pathologic correlation. Radiographics 19:121–146

    PubMed  CAS  Google Scholar 

  • Koeller KR, Smirniotopoulos JG, Jones RV (2007) Primary central nervous system lymphoma: Radiologogic-pathologic correlation. Radiographics 17:1497–1526

    Google Scholar 

  • Kono K, Inoue Y, Nakayama K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22:1081–1088

    PubMed  CAS  Google Scholar 

  • Kornreich L, Blaser S, Schwarz M et al (2001) Optic pathway glioma: correlation of imaging findings with the presence of neurofibromatosis. AJNR Am J Neuroradiol 22:1963–1969

    PubMed  CAS  Google Scholar 

  • Krabbe K, Gideon P, Wagn P, Hansen U, Thomsen C, Madsen F (1997) MR diffusion imaging of human intracranial tumours. Neuroradiology 39:483–489

    PubMed  CAS  Google Scholar 

  • Kroll RA, Neuwelt EA (1998) Outwitting the blood–brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 42:1083–1099

    PubMed  CAS  Google Scholar 

  • Kuroiwa T, Ohta T, Tsutsumi A (1999) Malignant pilocytic astrocytoma in the medulla oblongata: case report. Brain Tumor Pathol 16:81–85

    PubMed  CAS  Google Scholar 

  • Law M (2004) MR spectroscopy of brain tumors. Top Magn Reson Imaging Oct 15:291–313

    Google Scholar 

  • Law M, Cha S, Knopp EA et al (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222:715–721

    PubMed  Google Scholar 

  • Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998

    PubMed  Google Scholar 

  • Law M, Oh S, Babb JS et al (2006) Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging—prediction of patient clinical response. Radiology 238:658–667

    PubMed  Google Scholar 

  • Lee DH, Norman D, Newton TH (1987) MR imaging of pineal cysts. J Comput Assist Tomogr 1:586–590

    Google Scholar 

  • Lee Y, Van Tassel P (1989) Intracranial oligodendrogliomas: imaging find­ings in 35 untreated cases. AINR Am I Neuroradiol 10:119–127

    Google Scholar 

  • Lee Y, Van Tassel P, Bruner JM et al (1989) Juvenile pilocytic astr, tomas: CT and MR imaging characteri,stics. AJNR Am J Neuroradiology 10:363–370

    Google Scholar 

  • Levin VA, Leibel SA, Gutin PH (2001) Neoplasms of the central nervous system. In: DeVita VT Jr, Hellman S, Rosenberg SA (eds) Cancer: principles and practice of oncology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 2100–2160

    Google Scholar 

  • Lipper MH, Eberhard DA, Phillips CD, Vezina LG, Cail WS (1993) Pleomorphic xanthoastrocytoma, a distinctive astroglial tumor: neuroradiologic and pathologic features. AJNR Am J Neuroradiol 14:1397–1404

    PubMed  CAS  Google Scholar 

  • Lopes MBS, VandenBerg SR, Scheithauer BW (1993) The World Health Organization classification of nervous system tumors in experimental neuro-oncology. In: Levine AJ, Schmidek HH (eds) Molecular genetics of nervous system tumors. Wiley-Liss, New York, pp 1–36

    Google Scholar 

  • Lu S, Ahn D, Johnson G, Law M, Zagzag D, Grossman RI (2004) Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology 232:221–228

    PubMed  Google Scholar 

  • Ludemann L, Grieger W, Wurm R et al (2001) Comparison of dynamic contrast-enhanced MRI with WHO tumor grading for gliomas. Eur Radiol 11:1231–1241

    PubMed  CAS  Google Scholar 

  • Lussanet QG de, Langereis S, Beets-Tan RG et al (2005) Dynamic contrast-enhanced MR imaging kinetic parameters and molecular weight of dendritic contrast agents in tumor angiogenesis in mice. Radiology 235:65–72

    PubMed  Google Scholar 

  • Mafee MF, Goodwin J, Dorodi S (1999) Optic nerve sheath meningiomas. Role of MR imaging. Radiol Clin North Am 37:37–58

    PubMed  CAS  Google Scholar 

  • Majos C, Cucurella G, Aguilera C, Coll S, Pons L (1999) Intraventricular meningiomas: MR imaging and MR spectroscopic findings in two cases. AJNR Am J Neuroradiol 20:882–885

    PubMed  CAS  Google Scholar 

  • Majos C, Julia-Sape M, Alonso J, Serrallonga M, Aguilera C, Acebes JJ, Arus C, Gili J (2004) Brain tumor classification by proton MR spectroscopy: comparison of diagnostic accuracy at short and long TE. AJNR Am J Neuroradiol 25:1696–1704

    PubMed  Google Scholar 

  • Maleci A, Cervoni L, Delfini R (1992) Medulloblastoma in children and in adults: a comparative study. Acta Neurochir (Wien) 119:62–67

    CAS  Google Scholar 

  • Marks JE, Gado M (1977) Serial computed tomography of primary brain tumors following surgery, irradiation, and chemotherapy. Radiology 125:119–125

    PubMed  CAS  Google Scholar 

  • Maroldi R, Farina D, Palvarini L, Marconi A, Gadola E, Menni K, Battaglia G (2001) Computed tomography and magnetic resonance imaging of pathologic conditions of the middle ear. Eur J Radiol 40:78–93

    PubMed  CAS  Google Scholar 

  • Martin N, Pierot L, Sterkers O, Mompoint D, Nahum H (1990) Primary choroid plexus papilloma of the cerebellopontine angle: MR imaging. Neuroradiology 31:541–543

    PubMed  CAS  Google Scholar 

  • Mena H, Nakazato Y, Jouvet A et al (2000) Pineocytoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 118–120

    Google Scholar 

  • Mena H, Nakazato Y, Jouvet A et al (2000) Pineoblastoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 116–118

    Google Scholar 

  • Meyerand ME, Pipes JM, Mamourian A, Tosteson TD, Dunn JF (1999) Classification of biopsy-confirmed brain tumors using single-voxel MR spectroscopy. AJNR Am J Neuroradiol 20:117–123

    PubMed  CAS  Google Scholar 

  • Meyers SP, Wildenhain SL, Chang JK et al (2000) Postoperative evaluation for disseminated medulloblastoma involving the spine: contrast-enhanced MR findings, CSF cytologic analysis, timing of disease occurrence, and patient outcomes. AJNR Am J Neuroradiol 21:1757–1765

    PubMed  CAS  Google Scholar 

  • Mishima K, Nakamura M, Nakamura H, Nakamura O, Funata N, Shitara N (1992) Leptomeningeal dissemination of cerebellar pilocytic astrocytoma: case report. J Neurosurg 77:788–791

    PubMed  CAS  Google Scholar 

  • Muroff LR, Runge VM (1995) The use of MR contrast in neoplastic disease of the brain. Top Magn Reson Imaging 7:137–157

    PubMed  CAS  Google Scholar 

  • Naidich TP, Zimmerman RA (1984) Primary brain tumors in children. Semin Roentgenol 19:100–114

    PubMed  CAS  Google Scholar 

  • Nakano T, Asano K, Miura, Itoh S, Suzuki S (2002) Meningiomas with brain edema: radiological characteristics on MRI and review of the literature. Clin Imaging 26:243–249

    PubMed  Google Scholar 

  • Naylor MF, Scheithauer BW, Forbes GS, Tomlinson FH, Young WF (1995) Rathke cleft cyst: CT, MR, and pathology of 23 cases. J Comput Assist Tomogr 19:853–859

    PubMed  CAS  Google Scholar 

  • Negendank WG, Sauter R, Brown TR et al (1996) Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 84:449–458

    PubMed  CAS  Google Scholar 

  • Nelson JS, Bruner JM, Wiestler OD et al (2000a) Ganglioglioma and gangliocytoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 96–98

    Google Scholar 

  • Nelson JS, Von Deimling A, Petersen I et al (2000b) Metastatic tumours of the CNS. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 250–253

    Google Scholar 

  • Neuwelt EA (2004) Mechanisms of disease: the blood–brain barrier. Neurosurgery 54:131–140

    PubMed  Google Scholar 

  • Nikas I, Anagnostara A, Theophanopoulou M, Stefanski K, Michail A, Hdjegeorgi Ch (2004) Desmoplastic infantile ganglioglioma: MRI and histological findings case report. Neuroradiology. Dec 46:1039–1043

    CAS  Google Scholar 

  • Norfray JF, Darling C, Byrd S et al (1999) Short TE proton MRS and neurofibromatosis type 1 intracranial lesions. J Comput Assist Tomogr 23:994–1003

    PubMed  CAS  Google Scholar 

  • Oeckler R, Feiden W (1991) Benign symptomatic lesions of the pineal gland. Report of seven cases treated surgically. Acta Neurochirurg 108:40–44

    CAS  Google Scholar 

  • Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489

    PubMed  CAS  Google Scholar 

  • O’Neill BP, Dinapoli RP, Kurtin PJ et al (1995) Occult systemic non-Hodgkin’s lymphoma (NHL) in patients initially diagnosed as primary central nervous system lymphoma (PCNSL): how much staging is enough? J Neurooncol 25: 67–71

    PubMed  CAS  Google Scholar 

  • Padhani AR, Husband JE (2001) Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin Radiol 56:607–620

    PubMed  CAS  Google Scholar 

  • Patchell RA (2003) The management of brain metastases. Cancer Treat Rev 29:533–540

    PubMed  Google Scholar 

  • Pencalet P, Maixner W, Sainte-Rose C et al (1999) Benign cerebellar astrocytomas in children. J Neurosurg 90:265–273

    PubMed  CAS  Google Scholar 

  • Phillipon JH, Clemenceau SH, Fauchon FH et al (1993) Supratentorial low­grade astrocytomas inadults. Neurosurgery 32:554–559

    Google Scholar 

  • Pierallini A, Bonamini M, Bozzao A et al (1997) Supratentorial diffuse astrocytic tumours: proposal of an MRI classification. Eur Radiol 7:395–399

    PubMed  CAS  Google Scholar 

  • Pierallini A, Bonamini M, Di Stefano D, Siciliano P, Bozzao L (1999) Pleomorphic xanthoastrocytoma with CT and MRI appearance of meningioma. Neuroradiology 41:30–34

    PubMed  CAS  Google Scholar 

  • Pisaneschi M, Kapoor G (2005) Imaging the sellar and parasellar region. Neuroimaging Clin N Am 15:203–219

    PubMed  Google Scholar 

  • Pollack IF, Lunsford LD, Flickinger JC et al (1989) Prognostic factors in the diagnosis and treatment of primary central nervous system lymphoma. Cancer 63:939–947

    PubMed  CAS  Google Scholar 

  • Ponce P, Alvarez-Santullano MV, Otermin E, Santana MA, Garcia-Ludena, MV (1998) Gliomatosi cerebri: findings with computed tomography and magnetic resonance imaging. Eur J Radiol 28:226–229

    PubMed  CAS  Google Scholar 

  • Price SJ, Jena R, Burnet NG, Carpenter TA, Pickard JD, Gillard JH (2007) Predicting patterns of glioma recurrence using diffusion tensor imaging. Eur Radiol (in press)

    Google Scholar 

  • Pronin IN, Holodny AI, Petraikin AV (1997) MRI of high-grade glial tumors: correlation between the degree of contrast enhancement and the volume of surrounding edema. Neuroradiology 39:348–350

    PubMed  CAS  Google Scholar 

  • Provenzale JM, York G, Moya MG, Parks L, Choma M, Kealey S, Cole P, Serajuddin H (2006a) Correlation of relative permeability and relative cerebral blood volume in high-grade cerebral neoplasms. AJR Am J Roentgenol 187:1036–1042

    PubMed  Google Scholar 

  • Provenzale JM, Mukundan S, Barboriak DP (2006b) Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 239:632–649

    PubMed  Google Scholar 

  • Ragel BT, Couldwell WT (2004) Pituitary carcinoma: a review of the literature. Neurosurg Focus 16:E7

    PubMed  Google Scholar 

  • Rand T, Lippitz P, Kink E, Huber H, Schneider B, Imhof H (2002) Evaluation of pituitary microadenoma with dynamic MR imaging. Eur J Radiol 41:131–135

    PubMed  Google Scholar 

  • Rautioa J, Chikhale PJ (2004) Drug delivery systems for brain tumor therapy. Curr Pharm Des 10:1341–1353

    PubMed  Google Scholar 

  • Reifenberger G, Kros JM, Burger PC et al (2000a) Oligodendroglioma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 56–61

    Google Scholar 

  • Reifenberger G, Kros JM, Burger PC et al (2000b) Oligoastrocytoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 65–67

    Google Scholar 

  • Rennert J, Doerfler A (2007) Imaging of sellar and parasellar lesions. Clin Neurol Neurosurg 109:111–124

    PubMed  Google Scholar 

  • Ries LAG, Eisner MP, Kosary CL et al (2003)Trends in SEER incidence and US mortality using the joinpoint regression program 1975–2000 with up to three joinpoints by race and sex. In: Ries LAG, Eisner MP, Kosary CL et al (eds) SEER Cancer Statistics Review, 1975–2000. Section 3: Brain and other nervous system cancer (invasive), Table III-1. National Cancer Institute, Bethesda, Md.

    Google Scholar 

  • Roberts RO, Lynch CF, Jones MP, Hart MN (1991) Medulloblastoma: a population-based study of 532 cases. J Neuropathol Exp Neurol 50:134–144

    PubMed  CAS  Google Scholar 

  • Romero FJ, Ortega A, Titus F, Ibarra B, Navarro C, Rovira M (1988) Gliomatosis cerebri with formation of a glioblastoma multiform. Study and follow-up by magnetic resonance and computed tomography. J Comput Assist Tomogr 12:253–257

    CAS  Google Scholar 

  • Rorke LB, Hart MN, McLendon RE (2000) Supratentorial primitive neuroectodermal tumour (PNET). In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 141–144

    Google Scholar 

  • Ruscalleda J, Feliciani M, Avila A, Castaner E, Guardia E, de Juan M (1994) Neuroradiological features of intracranial and intraorbital meningeal haemangiopericytomas. Neuroradiology 36:440–445

    PubMed  CAS  Google Scholar 

  • Rydberg JN, Hammond CA, Grimm RC et al (1994) Initial clinical experience in MR imaging of the brain with a fast fluid-attenuated inversion-recovery pulse sequence. Radiology 193:173–180

    PubMed  CAS  Google Scholar 

  • Salmon I, Dewitte 0, Pasteeis JL et al (1994) Prognostic scoring in adult as­trocytic tumors using patient age, histopathologic grade, and DNA histogram type. I Neurosurg 80:877–883

    CAS  Google Scholar 

  • Sari A, Dinc H, Gumele HR (1998) Interhemispheric lipoma associated with subcutaneous lipoma. Eur Radiol 8:628–630

    PubMed  CAS  Google Scholar 

  • Scatliff JH, Kwock L, Chancellor K, Bouldin TW, Kapoor CC, Castillo M (1997) Postmortem MR imaging of the brains of patients with AIDS. Neuroimaging Clin N Am 7:297–320

    PubMed  CAS  Google Scholar 

  • Scheithauer BW, Kovacs KT, Laws ER Jr et al (1986) Pathology of invasive pituitary tumours with special reference to functional classification. J Neurosurg 65:733–744

    PubMed  CAS  Google Scholar 

  • Schneider G, Kirchin MA, Pirovano G et al (2001) Gadobenate dimeglumine-enhanced magnetic resonance imaging of intracranial metastases: effect of dose on lesion detection and delineation. J Magn Reson Imaging 14:525–539

    PubMed  CAS  Google Scholar 

  • Schneider JH, Jr Raffel C, McComb JG (1992) Benign cerebellar astrocytomas of childhood. Neurosurgery 30:58–63

    PubMed  Google Scholar 

  • Schneider SW, Ludwig T, Tatenhorst L et al (2004) Glioblastoma cells release factors that disrupt blood–brain barrier features. Acta Neuropathol (Berl) 107:272–276

    Google Scholar 

  • Schwartzberg DG (1992) Imaging of pituitary tumors. Semin Ultrasound CT MR Jun 13:207–223

    CAS  Google Scholar 

  • Shaw EG, Scheithauer BW, O’Fallon I et al (1992) Oligodendrogliomas: the Mayo Clinic experience. I Neurosurg 76:428–434

    CAS  Google Scholar 

  • Smirniotopoulos JG, Rushing EJ, Mena H (1992) Pineal region massess: differential diagnosis. Radiographics 12:577

    PubMed  CAS  Google Scholar 

  • Smirniotopoulos JG, Yue NC, Rushing EJ (1993) Cerebellopontine angle masses: radiologic–pathologic correlation. Radiographics 13:1131–1147

    PubMed  CAS  Google Scholar 

  • Smirniotopoulos JG, Chiechi MV (1995) Teratomas, dermoids, and epidermoids of the head and neck. Radiographics 15:1437–1455

    PubMed  CAS  Google Scholar 

  • Smirniotopoulos JG, Yue NC, Rushing EJ (1996) Cerebellopontine angle masses: radiologic-pathologic correlation. Radiographics 16:1131–1143

    PubMed  Google Scholar 

  • Smirniotopoulos JG, Murphy FM, Rushing EJ, Rees JH, Schroeder JW (2007) From the archives of the AFIP: patterns of contrast enhancement in the brain and meninges. Radiographics 27:525–551

    PubMed  Google Scholar 

  • Spagnoli MV, Goldberg HI, Grossman RI, Bilaniuk LT, Gomori JM, Hackney DB, Zimmerman RA (1986) Intracranial meningiomas: high-field MR imaging. Radiology 161:369–375

    PubMed  CAS  Google Scholar 

  • Spagnoli MV, Goldberg HI, Grossman RI et al (1986) Intracranial meningiomas: high-field MR imaging. Radiology 161:369–375

    PubMed  CAS  Google Scholar 

  • Spoto G, Press G, Hesselink J, Solomon M (1990) Intracranial ependymoma and subependymoma: MR manifestations. AJNR Am J Neuroradiol 11:83–91

    PubMed  CAS  Google Scholar 

  • Stadnik TW, Chaskis C, Michotte A et al (2001) Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR Am J Neuroradiol 22:969–976

    PubMed  CAS  Google Scholar 

  • Stadnik TW, Demaerel P, Luypaert RR et al (2002) Imaging Tutorial: Differential diagnosis of bright lesion on diffusion-weighted MR images. Radiographics doi:10.1148/radiol.e7

    Google Scholar 

  • Stieber VW (2001) Low-grade gliomas. Curr Treat Options Oncol 2:495–506

    PubMed  CAS  Google Scholar 

  • Stieltjes B, Schluter M, Didinger B, Weber MA, Hahn HK, Parzer P, Rexilius J, Konrad-Verse O, Peitgen HO, Essig M (2006) Diffusion tensor imaging in primary brain tumors: reproducible quantitative analysis of corpus callosum infiltration and contralateral involvement using a probabilistic mixture model. Neuroimage 31:531–542

    PubMed  Google Scholar 

  • Strong JA, Hatten HP Jr, Brown MT et al (1993) Pilocytic astrocytoma: correlation between the initial imaging features and clinical aggressiveness. AJR Am J Roentgenol 161:369–372

    PubMed  CAS  Google Scholar 

  • Sugahara T, Korogi Y, Kochi M et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60

    PubMed  CAS  Google Scholar 

  • Sze G, Johnson C, Kawamura Y et al (1998) Comparison of single- and triple-dose contrast material in the MR screening of brain metastases. AJNR Am J Neuroradiol 19:821–828

    PubMed  CAS  Google Scholar 

  • Takada Y, Ohno K, Tamaki M, Hirakawa K (1999) Cerebellopontine angle pilocytic astrocytoma mimicking acoustic schwannoma. Neuroradiology 41:949–950

    PubMed  CAS  Google Scholar 

  • Tasdemiroglu E, Awh M, Walsh J (1996) MRI of cerebellopontine angle choroid plexus papilloma. Neuroradiology 38:38–40

    PubMed  CAS  Google Scholar 

  • Thurnher MM, Thurnher SA, Schindler E (1997) CNS involvement in AIDS: spectrum of CT and MR findings. Eur Radiol 7:1091–1097

    PubMed  CAS  Google Scholar 

  • Tien RD, Cardenas CA, Rajagopalan S (1992) Pleomorphic xanthoastrocytoma of the brain: MR findings in six patients. AJR Am J Roentgenol 159:1287–1290

    PubMed  CAS  Google Scholar 

  • Tofts PS, Kermode AG (1991) Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

    PubMed  CAS  Google Scholar 

  • Tsuchida T, Kamata K, Kawamata M et al (1984) Brain tumors in tuberous sclerosis: reports of 4 cases. Childs Brain 8:271–283

    Google Scholar 

  • Tsuchiya K, Mizutani Y, Hachiya J (1996) Preliminary evaluation of fluid-attenuated inversion-recovery MR in the diagnosis of intracranial tumors. Am J Neuroradiol 17:1081–1086

    PubMed  CAS  Google Scholar 

  • Uematsu H, Maeda M (2006) Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability. Eur Radiol 16:180–186

    PubMed  Google Scholar 

  • Van DP, Sijens PE, Schmitz PI et al (1997) Gd-enhanced MR imaging of brain metastases: contrast as a function of dose and lesion size. Magn Reson Imaging 15:535–541

    Google Scholar 

  • Vuori K, Kankaanranta L, Hakkinen AM et al (2004) Low-grade gliomas and focal cortical developmental malformations: differentiation with proton MR spectroscopy. Radiology 230:703–708

    PubMed  Google Scholar 

  • Weber F, Knopf H (2006) Incidental findings in magnetic resonance imaging of the brains of healthy young men, J Neurol Sci 240:81–84

    Google Scholar 

  • Weber MA, Thilmann C, Lichy MP et al (2004) Assessment of irradiated brain metastases by means of arterial spin-labeling and dynamic susceptibility-weighted contrast-enhanced perfusion MRI: initial results. Invest Radiol 39:277–287

    PubMed  Google Scholar 

  • Weber MA, Zoubaa S, Schlieter M et al (2006) Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors. Neurology 66:1899–1906

    PubMed  CAS  Google Scholar 

  • Wichmann W, Schubiger O, von DA, Schenker C, Valavanis A (1991) Neuroradiology of central neurocytoma. Neuroradiology 33:143–148

    PubMed  CAS  Google Scholar 

  • Wiestler OD, Lopes BS, Green AJ et al (2000a) Tuberous sclerosis complex and subependymal giant cell astrocytoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 227–230

    Google Scholar 

  • Wiestler OD, Schiffer D, Coons SW et al (2000b) Myxopapillary ependymoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 78–79

    Google Scholar 

  • Wiestler OD, Schiffer D (2000c) Subependymoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 80–81

    Google Scholar 

  • Wiestler OD, Schiffer D, Coons SW et al (2000d) Ependymoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 72–76

    Google Scholar 

  • Wilkinson ID, Jellineck DA, Levy D et al (2006) Dexamethasone and enhancing solitary cerebral mass lesions: alterations in perfusion and blood-tumor barrier kinetics shown by magnetic resonance imaging. Neurosurgery 58:640–646

    PubMed  Google Scholar 

  • Woodruff JM, Kourea HP, Louis DN et al (2000) Schwannoma. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon, pp 164–166

    Google Scholar 

  • World Health Organization (1990) Classification of brain tumors. World Health Organization, Zurich

    Google Scholar 

  • Yang S, Law M, Zagzag D, Wu HH, Cha S, Golfinos JG, Knopp EA, Johnson G (2003) Dynamic contrast-enhanced perfusion MR imaging measurements of endothelial permeability: differentiation between atypical and typical meningiomas. Am J Neuroradiol 24:1554–1559

    PubMed  Google Scholar 

  • Yuh WT, Nguyen HD, Tali ET et al (1994) Delineation of gliomas with various doses of MR contrast material. AJNR Am J Neuroradiol 15:983–989

    PubMed  CAS  Google Scholar 

  • Yuh WTC, Tali ET, Nguyen HD, Simonson TM, Mayr NA, Fisher DJ (1995) The effect of contrast dose, imaging time and lesion size in the MR detection of intracerebral metastasis. Am J Neuroradiol 16:373–380

    PubMed  CAS  Google Scholar 

  • Zimmerman RD, Fleming CA, Saint-Louis La, Lee BC, Manning JJ, Deck MD (1985) Magnetic resonance imaging of meningiomas. AJNR Am J Neuroradiol 6:149–157

    PubMed  CAS  Google Scholar 

  • Arnould M, Grandin C, Cosnard G, Duprez T (2004) Comparison of CT and three MR sequences for detecting and categorizing early (48 h) hemorrhagic transformation in hyperacute ischemic stroke. AJNR 25:939–944

    PubMed  Google Scholar 

  • Baird AE, Warach S (1998) Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab 18:583–609

    PubMed  CAS  Google Scholar 

  • Baker LL, Kucharczyk J, Sevick RJ, Mintorovitch J, Moseley ME (1991) Recent advances in MR imaging/spectroscopy of cerebral ischemia. AJR Am J Roentgenol 156:1133–1143

    PubMed  CAS  Google Scholar 

  • Bederson J et al (2000) Recommendations for the management of patients with unruptured intracranial aneurysms: a statement for healthcare professionals from the Stroke Council of the American Heart Association. Stroke 31:2742–2750

    PubMed  CAS  Google Scholar 

  • Bradley W (1993) MR appearance of hemorrhage in the brain. Radiology 189:15–26

    PubMed  Google Scholar 

  • Brown R et al (2005) Natural history, evaluation, and management of intracranial vascular malformations. Mayo Clin Proc 80:269–281

    PubMed  Google Scholar 

  • Brunereau L, Labauge P, Lasserve E, Laberge S, Levy C, Houtteville J (2002) Familial form of intracranial cavernous angioma: MR imaging findings in 51 families. Radiology 214:209–216

    Google Scholar 

  • Burdette JH, Ricci PE, Petitti N, Elster AD (1998) Cerebral infarction: time course of signal intensity changes on diffusion-weighted MR images. Am J Roentgenol 171:791–795

    CAS  Google Scholar 

  • Cloft HJ, Murphy HJ, Prince MR, Brunberg JA (1996) 3D gadolinium-enhanced MR angiography of the carotid arteries. Magn Reson Imaging 14:593–600

    PubMed  CAS  Google Scholar 

  • Connor S, Flis C, Langdon J (2005) Vascular masses of the head and neck. Clin Radiol 60:856–868

    PubMed  CAS  Google Scholar 

  • Cosnard G, Duprez T, Grandin C, Smith A, Munier T, Peeters A (1999) Fast FLAIR sequence for detecting major vascular abnormalities during the hyperacute phase of stroke: a comparison with MR angiography. Neuroradiology 41:342–346

    PubMed  CAS  Google Scholar 

  • Derex L, Nighoghossian N, Hermier M, Adeleine P, Philippeau F, Honnorat J, Yilmaz H, Dardel P, Froment JC, Trouillas P (2004) Thrombolysis for ischemic stroke in patients with old microbleeds on pretreatment MRI. Cerebrovasc Dis 17:238–241

    PubMed  CAS  Google Scholar 

  • Dillon W (1997) Cryptic vascular malformations: controversies in terminology, diagnosis, pathology and treatment. AJNR 18:1839–1846

    PubMed  CAS  Google Scholar 

  • Domenicucci M, Signorini P, Strzelecki J, Delfini R (1995) Delayed post-traumatic epidural hematoma. A review. Neurosurg Rev 18:109–122

    PubMed  CAS  Google Scholar 

  • Essig M, Kummer R, Egelhof T, Winter R, Sartor K (1996) Vascular MR contrast enhancement in cerebrovascular disease. AJNR 17:887–894

    PubMed  CAS  Google Scholar 

  • Feigin VL, Lawes CM, Bennett DA, Anderson C S (2003) Stroke epidemiology: a review of population based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2:43–53

    PubMed  Google Scholar 

  • Fiebach JB, Schellinger PD, Gass A, Kucinski T, Siebler M, Villringer A, Olkers P, Hirsch JG, Heiland S, Wilde P, Jansen O, Rother J, Hacke W, Sartor K (2004a) Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: a multicenter study on the validity of stroke imaging. Stroke 35:502–506

    PubMed  Google Scholar 

  • Fiebach JB, Schellinger PD, Hacke W, Geletneky K, Wilde P, Meyer M, Sartor K (2004b) MRI in acute subarachnoid haemorrhage; findings with a standardised stroke protocol. Neuroradiology 46:44–48

    PubMed  CAS  Google Scholar 

  • Frayne R et al (2003) Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38:385–402

    PubMed  Google Scholar 

  • Gasparotti R, Liserre R (2005) Intracranial aneurysms. Eur Radiol 15:441–447

    PubMed  Google Scholar 

  • Gonzalez RG, Schaefer PW, Buonanno FS, Schwamm LH, Budzik RF, Rordorf G, Wang B, Sorensen AG, Koroshetz W (1999) Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 h of stroke symptom onset. Radiology 210:155–162

    PubMed  CAS  Google Scholar 

  • Greenberg S (1998) Cerebral amyloid angiopathy: prospects for clinical diagnosis and treatment. Neurology 51:690–694

    PubMed  CAS  Google Scholar 

  • Greenberg S, O’Donnell H, Schaefer P, Kraft E (1999) MRI detection of new hemorrhages: Potential marker of progression in cerebral amyloid angiopathy. Neurology 53:1135–1138

    PubMed  CAS  Google Scholar 

  • Hacke W, Kaste M, Fieschi C et al (1995) Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA 274:1017–1025

    PubMed  CAS  Google Scholar 

  • Hamon M, Marie M, Clochon P, Coskun O, Constans M, Viader F, Courtheoux P, Baron C (2005) Quantitative relationships between ADC and perfusion changes in acute ischemic stroke using combined diffusion-weighted imaging and perfusion MR (DWI/PMR). J Neuroradiol 32:118–124

    PubMed  CAS  Google Scholar 

  • Hanel RA, Xaxier AR, Mohammad Y, Kirmani JF, Yahia AB, Qureshi AI (2002) Outcome following intracerebral hemorrhage and subarachnoid hemorrhage. Neurol Res 24:S58–S62

    PubMed  Google Scholar 

  • Hennerici M, Daffertschofer M, Jakobs L (1998) Failure to identify cerebral infarct mechanisms from topography of vascular territory lesions. AJNR 19:1067–1074

    PubMed  CAS  Google Scholar 

  • Hermier M et al (2003) Hypointense transcerebral veins at T2*-weighted MRI: a marker of hemorrhagic transformation risk in patients treated with intravenous tissue plasminogen activator. J Cereb Blood Flow Metab 23:1362–1370

    PubMed  CAS  Google Scholar 

  • Hill MD, Barber PA, Demchuk AM et al (2000) Building a “brain attack” team to administer thrombolytic therapy for acute ischemic stroke. CMAJ 162:1589–1593

    PubMed  CAS  Google Scholar 

  • Itoh Y et al (1993) Cerebral amyloid angiopathy: a significant cause of cerebellar as well as lobar cerebral hemorrhage in the elderly. J Neuro Sci 116:135–141

    CAS  Google Scholar 

  • Kalafut MA, Schriger DL, Saver JL, Starkman S (2000) Detection of early CT signs of >1/3 middle cerebral artery infarctions. Stroke 31:1667–1671

    PubMed  CAS  Google Scholar 

  • Kidwell CS et al (2004) Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA 292:1823–1830

    PubMed  CAS  Google Scholar 

  • Kim S, Lee H, Lee C (1994) Small primary intracerebral hemorrhage: clinical presentation of 28 cases. Stroke 25:1500–1506

    PubMed  CAS  Google Scholar 

  • Ko H, Johnston S, Young W, Singh V, Klatsky A (2003) Distinguishing intracerebral hemorrhages caused by arteriovenous malformations. Cerebrovasc Dis 15:206–209

    PubMed  CAS  Google Scholar 

  • Krapf H, Widder B, Skalej M (1998) Small rosary-like infarctions in the centrum ovale suggest hemodynamic failure. AJNR 19:1479–1484

    PubMed  CAS  Google Scholar 

  • Kubalek R, Moghtaderi A, Klisch J, Berlis A, Quiske A, Schumacher M (2003) Cerebral arteriovenous malformations: influence of angioarchitecture on bleeding risk. Acta Neurochir 145:1045–1052

    CAS  Google Scholar 

  • Kucinski T, Koch C, Eckert B, Becker V, Kro H, Heesen C, Grzyska U, Freitag J, Röther J, Zeumer H (2003) Collateral circulation is an independent radiological predictor of outcome after thrombolysis in acute ischaemic stroke. Neuroradiology 45:11–18

    PubMed  CAS  Google Scholar 

  • Kwon B, Han M, Kang H, Chang K (2005) MR imaging findings of intracranail dural arteriovenous fistulas: relations with venous drainage patterns. AJNR 26:2500–2507

    PubMed  Google Scholar 

  • Lee R, Becher M, Benson M, Rigamonti D (1997) Brain capillary telangiectasia: MR imaging appearance and clinicohistopathologic findings. Radiology 205:797–805

    PubMed  CAS  Google Scholar 

  • Lee SH, Bae HJ, Kwon SJ, Kim H, Kim YH, Yoon BW, Roh JK (2004) Cerebral microbleeds are regionally associated with intracerebral hemorrhage. Neurology 62:72–76

    PubMed  CAS  Google Scholar 

  • Licata C, Turazzi S (2003) Bleeding cerebral neoplasms with symptomatic hematoma. J Neurosurg Sci 47:201–210

    PubMed  CAS  Google Scholar 

  • Liebengerg WA, Worth R, Firth GB, Olney J, Norris JS (2005) Aneurysmal subarachnoid haemorrhage: guidance in making the correct diagnosis. Postgrad Med J 81:470–473

    Google Scholar 

  • Linfante I, Llinas RH, Caplan LR, Warach S (1999) MRI features of intracerebral hemorrhage within 2 h from symptom onset. Stroke 30:2263–2267

    PubMed  CAS  Google Scholar 

  • Liu LH, Chen CC, Chang MH (2004) Clinical findings of intracranial vertebral artery disease using magnetic resonance angiography. Acta Neurol Taiwan 13:120–125

    PubMed  Google Scholar 

  • Loubinoux I, Volk A, Borredon J, Guirimand S, Tiffon B, Seylaz J, Meric P (1997) Spreading of vasogenic edema and cytotoxic edema assessed by quantitative diffusion and T2 magnetic resonance imaging. Stroke 28:419–427

    PubMed  CAS  Google Scholar 

  • MacWalter RS, Ersoy Y, Wolfson DR (2001) Cerebral haemorrhage: parenchymal intracranial haemorrhage. Gerontology 47:119–130

    PubMed  CAS  Google Scholar 

  • Mohamed M, Heasely C, Yagmurlu B, Yousem DM (2004) Fluid-attenuated inversion recovery MR imaging and subarachnoid hemorrhage: not a panacea. AJNR 25:545–550

    PubMed  Google Scholar 

  • Mullins ME, Schaefer PW, Sorensen GA, Halpern EF, Ay H, He J, Koroshetz WJ, Gonzalez RG (2002) CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department. Radiology 224:353–360

    PubMed  Google Scholar 

  • NINDS rt-PA Study Group The (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333:1581–1587

    Google Scholar 

  • Noguchi K et al (1997) Subacute and chronic subarachnoid hemorrhage: diagnosis with fluid-attenuated inversion-recovery MR imaging. Radiology 203:257–262

    PubMed  CAS  Google Scholar 

  • Noguchi K, Ogawa T, Inugami A, Fujita H, Hatazawa J, Shimosegawa E, Okudera T, Uemura K, Seto H (1997) MRI of acute cerebral infarction: a comparison of FLAIR and T2-weighted fast spin-echo imaging. Neuroradiology 39:406–410

    PubMed  CAS  Google Scholar 

  • Oelerich M, Lentschig G, Zunker P, Reimer P, Rummeny J, Schuierer G (1998) Intracranial vascular stenosis and occlusion: comparison of 3D time-of-flight and 3D phase-contrast MR angiography. Neuroradiology 40:567–573

    PubMed  CAS  Google Scholar 

  • Özsarlak O, Van Goethem W, Maes M, Parizel M (2004) MR angiography of the intracranial vessels: technical aspects and clinical applications. Neuroradiology 46:955–972

    PubMed  Google Scholar 

  • Palmer AJ, Valentine WJ, Roze S, Lammert M, Spiesser J, Gabriel S (2005) Overview of costs of stroke from published, incidence-based studies spanning 16 industrialized countries. Curr Med Res Opin 21:19–26

    PubMed  Google Scholar 

  • Park DC, Nam HS, Lim SR, Lee PH, Heo JH, Lee BI, Kim DI (2000) MRI features of infarcts with potential cardiac source of embolism in the Yonsei Stroke Registry. Yonsei Medical Journal 41:431–435

    PubMed  CAS  Google Scholar 

  • Parsons MW, Yang Q, Barber PA, Darby DG, Desmond PM, Gerraty RP, Tress BM, Davis SM (2001) Perfusion magnetic resonance imaging maps in hyperacute stroke relative cerebral blood flow most accurately identifies tissue destined to infarct. Stroke 32:1581–1587

    PubMed  CAS  Google Scholar 

  • Patel MR, Edelman RR, Warach S (1996) Detection of hyperacute primary intraparenchymal hemorrhage by magnetic resonance imaging. Stroke 27:2321–2324

    PubMed  CAS  Google Scholar 

  • Pereira RS, Harris AD, Sevick RJ et al (2002) Effect of b value on contrast during diffusion-weighted magnetic resonance imaging assessment of acute ischemic stroke. J Magn Reson Imaging 15:591–596

    PubMed  Google Scholar 

  • Phan T, Huston J, Bernstein A, Riederer J, Brown D (2001) Contrast-Enhanced magnetic resonance angiography of the cervical vessels. Stroke 32:2282–2286

    PubMed  CAS  Google Scholar 

  • Preter M, Tzourio C, Ameri A, Bousser G (1996) Long-term prognosis in cerebral venous thrombosis. Stroke 27:243–246

    PubMed  CAS  Google Scholar 

  • Provenzale JM (1995) Dissection of the internal carotid and vertebral arteries: imaging features. AJR Am J Roentgenol 165(5):1099–1104

    PubMed  CAS  Google Scholar 

  • Provenzale JM (1997) Brain infarction in young adults: etiology and imaging. AJR Am J Roentgenol 169:1161–1168

    PubMed  CAS  Google Scholar 

  • Provenzale JM, Jahan R, Naidich TP, Fox AJ (2003) Assessment of the patient with hyperacute stroke: imaging and therapy. Radiology 229:347–359

    PubMed  Google Scholar 

  • Restrepo L, Jacobs A, Barker B, Beauchamp J, Skolasky L, Keswani C, Wityk J (2005) Etiology of perfusion-diffusion magnetic resonance imaging mismatch patterns. J Neuroimaging 15:254–260

    PubMed  Google Scholar 

  • Rigamonti D et al (1988) Appearance of venous malformations on magnetic resonance imaging. J Neurosurg 69:535–539

    PubMed  CAS  Google Scholar 

  • Rinkel G (2005) Intracranial aneurysm screening: indications and advice for practice. Lancet Neurol 4:122–128

    PubMed  Google Scholar 

  • Rosand J (2004) Hypertension and the brain. Neurology 63:6–7

    PubMed  Google Scholar 

  • Rovira A, Orellana P, Alvarez-Sabin J, Arenillas F, Aymerich X, Grive E, Molina C, Rovira-Gols A (2004) Hyperacute ischemic stroke: middle cerebral artery susceptibility sign at echo-planar gradient-echo MR imaging. Radiology 232:466–473

    PubMed  Google Scholar 

  • Rumboldt Z, Kalousek M, Castillo M (2003) Hyperacute subarachnoid hemorrhage on T2-weighted MR images. AJNR 24:472–475

    PubMed  Google Scholar 

  • Sato A, Takahashi S, Soma Y, Ishii K, Kikuchi Y, Watanabe T, Sakamoto K (1991) Cerebral infarction: early detection by means of contrast-enhanced cerebral arteries at MR imaging. Radiology 178:433–439

    PubMed  CAS  Google Scholar 

  • Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345

    PubMed  CAS  Google Scholar 

  • Schellinger PD, Chalela JA, Kang D, Latour LL, Warach S (2005) Diagnostic and prognostic value of early MR imaging vessel signs in hyperacute stroke patients imaged <3 h and treated with recombinant tissue plasminogen activator. AJNR Am J Neuroradiol 26:618–624

    PubMed  Google Scholar 

  • Schellinger PD, Jansen O, Fiebach JB et al (1999) A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral hemorrhage. Stroke 30:765–768

    PubMed  CAS  Google Scholar 

  • Selim M et al (2002) Predictors of hemorrhagic transformation after intravenous recombinant tissue plasminogen activator. Stroke 33:2047–2052

    PubMed  CAS  Google Scholar 

  • Selim M, Fink J, Linfante I, Kumar S, Schlaug G, Caplan R (2002) Diagnosis of cerebral venous thrombosis with echo-planar T2*-weighted magnetic resonance imaging. Arch Neurol 59:1021–1026

    PubMed  Google Scholar 

  • Sohn CH, Sevick RJ, Frayne R (2003) Contrast-enhanced MR angiography of the intracranial circulation. Magn Reson Imaging Clin N Am 11:599–614

    PubMed  Google Scholar 

  • Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin-echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    CAS  Google Scholar 

  • Summers PE, Jarosz JM, Markus H (2001) MR angiography in cerebrovascular disease. Clinical Radiology 56:437–546

    PubMed  CAS  Google Scholar 

  • Suzuki M, Matsui O, Kobayashi K, Ueda F, Saitoh C, Katagiri A, Sanada J, Tawara M, Terayama N, Kawashima H, Kida S, Yamashita J (2003) Contrast-enhanced MRA for investigation of cerebral arteriovenous malformations. Neuroradiology 45:231–235

    PubMed  CAS  Google Scholar 

  • Sze G, Krol Ge, Olsen W, Harper P, Galicich J Heier L, Zimmerman R, Deck M (1987) Hemorrhagic neoplasms: MR mimics of occult vascular malformations. AJR Am J Roentgenol 149:1223–1230

    PubMed  CAS  Google Scholar 

  • Tei H, Uchiyama S, Koshimizu K, Kobayashi M, Ohara K (1999) Correlation between symptomatic radiological and etiological diagnosis in acute ischemic stroke. Acta Neurol Scand 99:192–195

    PubMed  CAS  Google Scholar 

  • Tong D, Adami A, Moseley M, Marks M (2000) Relationship between apparent diffusion coefficient and subsequent hemorrhagic transformation following acute ischemic stroke. Stroke 31:2378–2384

    PubMed  CAS  Google Scholar 

  • U-King-Im JM, Trivedi RA, Graves MJ, Higgins NJ, Cross JJ, Tom BD, Hollingworth W, Eales H, Warburton EA, Kirkpatrick PJ, Antoun NM, Gillard JH (2004) Contrast-enhanced MR angiography for carotid disease. Neurology 62:1282–1290

    PubMed  CAS  Google Scholar 

  • Underwood RS, Mohiaddin RH (1993) Magnetic resonance imaging of atherosclerotic vascular disease. Am J Hypertens 6:335S–339S

    PubMed  CAS  Google Scholar 

  • Vilanova JC et al (2004) Hemangioma from head to toe: MR imaging with pathologic correlation. Radiographics 24(2):367–385

    PubMed  Google Scholar 

  • Vo K, Santiago F, Lin W, Hsu C, Lee Y, Lee J (2003) MR imaging enhancement patterns as predictors of hemorrhagic transformation in acute ischemic stroke. AJNR 24:674–679

    PubMed  Google Scholar 

  • Wardlaw J, White P (2000) The detection and management of unruptured intracranial aneurysms. Brain 123:205–221

    PubMed  Google Scholar 

  • Wasay M, Azeemuddin M (2005) Neuroimaging of cerebral venous thrombosis. J Neuroimaging 15:118–128

    PubMed  Google Scholar 

  • Wasenko J, Lieberman KA, Rodziewicz GS, Holsapple J (2002) Magnetic resonance imaging characteristics of hyperacute hemorrhage in the brain and spine. Clin Imaging 26:330–337

    PubMed  Google Scholar 

  • White P, Teasdale E, Wardlaw J, Easton V (2001) Intracranial aneurysms: CT angiography and MR angiography for detection - prospective blinded comparison in a large patient cohort. Radiology 219:739–749

    PubMed  CAS  Google Scholar 

  • Wiesmann M, Mayer TE, Yousry I, Medele R, Hamann GF, Bruckmann H (2002) Detection of hyperacute subarachnoid hemorrhage of the brain by using magnetic resonance imaging. J Neurosurg 96:684–689

    PubMed  Google Scholar 

  • Willinsky R, Goyal M, Brugge K, Montanera W (1999) Tortuous, engorged pial veins in intracranial dural arteriovenous fistulas: correlation with presentation, location and MR findings in 122 patients. AJNR 20:1031–1036

    PubMed  CAS  Google Scholar 

  • Wolf R (2001) Intraarterial signal on fluid-attenuated inversion recovery images: a measure of hemodynamic stress? AJNR 22:1015–1017

    PubMed  CAS  Google Scholar 

  • Wycliffe ND, Choe J, Holshouser B, Oyoyo UE, Haacke M, Kido DK (2004) Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study. J Magn Reson Imaging 20:372–377

    PubMed  Google Scholar 

  • Yamada M (2000) Cerebral amyloid angiopathy: An overview. Neuropathology 1:8–22

    Google Scholar 

  • Yang JJ, Hill MD, Morrish WF, Hudon ME, Barber PA, Demchuk AM, Sevick RJ, Frayne R (2002) Comparison of pre- and postcontrast 3d time-of-flight MR angiography for the evaluation of distal intracranial branch occlusions in acute ischemic stroke. AJNR Am J Neuroradiol 23:557–567

    PubMed  Google Scholar 

  • Yuh WT, Crain MR, Loes DJ, Greene GM, Ryals TJ, Sato Y (1991) MR imaging of cerebral ischemia: findings in the first 24 h. AJNR Am J Neuroradiol 12:621–629

    PubMed  CAS  Google Scholar 

  • Zaheer A, Ozsunar T, Schaefer P, (2000) Magnetic resonance imaging of cerebral hemorrhagic stroke. Top Magn Reson Imaging 11:288–299

    PubMed  CAS  Google Scholar 

  • Zwan A van der, Hillen B, Tulleken C, Dujovny M (1993) A quantitative investigation of the variability of the major cerebral arterial territories. Stroke 24:1951–1959

    PubMed  Google Scholar 

  • Ackerman LL, Traynelis VC (2002) Dural space infections: cranial subdural empyema and cranial epidural abscess. In Osenbach RK, Zeidman SM (eds) Infections in neurological surgery: diagnosis and management, 1st edn. Lippincott-Raven, Philadelphia, pp 85–99

    Google Scholar 

  • Andreula C (2004) Cranial viral infections in the adult. Eur Radiol 14:E132–E144

    PubMed  Google Scholar 

  • Anslow P (2004) Cranial bacterial infection. Eur Radiol 14:E415–E154

    Google Scholar 

  • Arbealáez A, Medina E, Restrepo F, Castillo M (2004) Cerebral tuberculosis. Semin Roentgenol 474–480

    Google Scholar 

  • Bernaerts A, Vanhoenacker FM, Parizel PM, Van Goethem JWM, Altena RV, Laridon A, Roeck JD, Coeman V, De Schepper AM (2003) Tuberculosis of the central nervous system: overview of neuroradiological findings. Eur Radiol 13:1876–1890

    PubMed  CAS  Google Scholar 

  • Buff BL, Mathews VP, Elster AD (1994) Bacterial and viral parenchymal infections of the brain. Top Magn Reson Imaging 6:11–21

    PubMed  Google Scholar 

  • Burtscher IM, Holtas S (1999) In vivo proton MR spectroscopy of untreated and treated brain abscesses. AJNR Am J Neuroradiol 20:1049–1053

    PubMed  CAS  Google Scholar 

  • Cannard KR (2002) Tuberculous meningitis and tuberculoma. In Osenbach RK, Zeidman SM (eds) Infections in neurological surgery: diagnosis and management, 1st edn. Lippincott-Raven, Philadelphia, pp 33–40

    Google Scholar 

  • Castillo M (2004a) Imaging of meningitis. Semin Roentgenol 39:458–464

    PubMed  Google Scholar 

  • Castillo M (2004b) Imaging of neurocysticercosis. Semin Roentgenol 39:465–473

    PubMed  Google Scholar 

  • Castillo M, Thurner M (2004) Imaging viral and prion infections. Semin Roentgenol 482–484

    Google Scholar 

  • Celik H, Karaosmanoglu AD, Gultekin S, Tokgoz N, Tali ET (2005) Cerebral amebiasis: MRI, DWI, perfusion and MRS features. Riv Neuroradiol 18:559–563

    Google Scholar 

  • Choi IC, Chang KH, Kim YH et al (1998) MRI features of choroids plexitis. Neuroradiology 40:303–307

    Google Scholar 

  • Choi JY, Akins PT (2002) Bacterial meningitis. In Osenbach RK, Zeidman SM (eds) Infections in neurological surgery: diagnosis and management, 1st edn. Lippincott-Raven, Philadelphia, pp 3–12

    Google Scholar 

  • Dev R, Gupta RK, Poptani H, Roy R, Sharma S, Husain M (1998) Role of in vivo proton MRS in the diagnosis and management of brain abscess. Neurosurgery 42:37–43

    PubMed  CAS  Google Scholar 

  • Dubey A, Patwardhan RV, Sampth S, Santosh V, Kolluri S, Nanda A (2005) Intracranial fungal granuloma: analysis of 40 patients and review of the literature. Surg Neurol 63:254–260

    PubMed  Google Scholar 

  • Ercan N, Gultekin S, Celik H, Tali ET, Oner AY, Erbas G (2004) Diagnostic value of contrast-enhanced fluid attenuated inversion recovery (FLAIR) sequence in intracranial metastases. AJNR Am J Neuroradiol 25:761–765

    PubMed  Google Scholar 

  • Erdogan E, Beyzadeoglu M, Arpacı F, Celasun B (2002) Cerebellar aspergillosis: a case report and literature review. Neurosurgery 50:874–876

    PubMed  Google Scholar 

  • Gee GT, Bazin C, Jinkins JR (1992) Miliary tuberculosis involving the brain: MR findings. Am J Roentgenol 159:1075–1076

    CAS  Google Scholar 

  • Gellin BG, Weingarten K, Gamache FW, Hartman BJ (1997) Epidural abscess. In Scheld WM, Whitley RJ, Durack DT (eds) Infections of the central nervous system, 2nd edn. Lippincott-Raven Philadelphia, pp507–522

    Google Scholar 

  • Griffiths P (2004) Cytomegalovirus infection of the central nervous system. Herpes 11(Suppl 2):95A–99A

    PubMed  Google Scholar 

  • Gupta RK, Kathuria MK, Pradhan S (1999) Magnetization MR imaging in CNS tuberculosis. AJNR 20:867–875

    PubMed  CAS  Google Scholar 

  • Gupta RK, Roy R, Dev R (1996) Fingerprinting of Mycobacterium tuberculosis in patients with intracranial tuberculomas by using in vivo, ex vivo, and in vitro MRS. Magn Reson Med 36:829–833

    PubMed  CAS  Google Scholar 

  • Harisinghani M. McLoud TC, Shepard JA, Ko JP, Shroff MM, Mueller PR (2000) Tuberculosis from head to toe. Radiographics 20:449–470

    PubMed  CAS  Google Scholar 

  • Harris TM, Edwards MK (1992) Meningitis. Neuroimaging Clin N Am 1:39–55

    Google Scholar 

  • Helfgott DC, Weingarten K, Hartman BJ (1997) Subdural Empyema. In: Scheld WM, Whitley RJ, Durack DT (eds) Infections of the central nervous system, 2nd edn. Lippincott-Raven Philadelphia, pp 495–505

    Google Scholar 

  • Hunter JV, Morriss MC (2003) Neuroimaging of central nervous infections. Semin Pediatr Infect Dis 14:140–164

    PubMed  CAS  Google Scholar 

  • Jereb M, Lainscak M, Marin J, Popovic M (2005) Herpes simplex virus infection limited to the brainstem. Middle Eur J Med 117:495–499

    Google Scholar 

  • Jinkins JR (1991) Computed tomography of intracranial tuberculosis. Neuroradiology 33:126–135

    PubMed  CAS  Google Scholar 

  • Jinkins JR, Gupta R, Chang KH, Rodriguez-Carvajal J (1995) MR imaging of central nervous system tuberculosis. Radiol Clin N Am 33:771–786

    PubMed  CAS  Google Scholar 

  • Jordan J, Enzmann DR (1991) Encephalitis. Neuroimag Clin N Am 1:17–38

    Google Scholar 

  • Kamra P, Azad R, Prasad KN, Jha S, Pradhan S, Gupta RK (2004) Infectious meningitis: prospective evaluation with magnetization transfer MRI. Br J Radiol 77:387–394

    PubMed  CAS  Google Scholar 

  • Kanamalla US, Ibarra R, Jinkins JR (2000) Imaging of cranial meningitis and ventriculitis. Neuroimaging Clin N Am 10:309–329

    PubMed  CAS  Google Scholar 

  • Kastrup O, Wanke I, Maschke M (2005) Neuroimaging of infections. NeuroRx 2:324–332

    PubMed  Google Scholar 

  • Kohli A, Gupta RK, Poptani H, Roy R (1995) In vivo proton MRS in a case of intracranial hydatid cyst. Neurology 45:562–564

    PubMed  CAS  Google Scholar 

  • Lee JH, Na DG, Choi KH et al (2002) Subcortical low intensity on MR imaging of meningitis, viral encephalitis, and leptomeningeal metastasis. AJNR Am J Neuroradiol 23:1369–1377

    Google Scholar 

  • Leuthardt EC, Wippold FJ, Oswood MC, Rich KM (2002) Diffusion-weighted MR imaging in the preoperative assessment of brain abscesses. Surg Neurol 58:395–402

    PubMed  Google Scholar 

  • Maschke M, Kastrup O, Forsting M, Diener HC (2004) Update on neuroimaging in infectious central nervous systems disease. Curr Opin Neurol 17:475–480

    PubMed  Google Scholar 

  • Mathews PM, Shoubridge E, Arnold DL (1989) Brain phosphorus MRS in acute bacterial meningitis. Arch Neurol 46:994

    Google Scholar 

  • McGuinness FE (2000) Intracranial tuberculosis. In: Clinical imaging in non-pulmonary tuberculosis. Springer, Berlin Heidelberg New York, pp 5–25

    Google Scholar 

  • Mehta RC, Pike GB, Haros SP, Enzmann DR (1995) Central nervous system tumor, infection, and infarction: detection with gadolinium-enhanced magnetization transfer MR imaging. Radiology 195:41–46

    PubMed  CAS  Google Scholar 

  • Nguyen JB, Black BR, Leimkuehler MM, Halder V, Nguyen JV, Ahktar N (2004) Intracranial pyogenic abscess: imaging diagnosis utilizing recent advances in computed tomography and magnetic resonance imaging. Crit Rev Comput Tomogr 45:181–224

    PubMed  Google Scholar 

  • Osborn AG (1994) Infections of the brain and its linings. In: Osborn A (ed) Diagnostic neuroradiology. Mosby, St. Louis, pp 673–715

    Google Scholar 

  • Patterson FA, Ling GSF (2002)Viral meningitis. In: Osenbach RK, Zeidman SM (eds) Infections in neurological surgery: diagnosis and management, 1st edn. Lippincott-Raven, Philadelphia, pp 13–22

    Google Scholar 

  • Perdiago J, Rojas R, Verzelli LF, Castillo M (2004) Fungal infections of the central nervous system. Semin Roentgenol 39:505–518

    Google Scholar 

  • Roos KL, Tunkel AR, Scheld MS (1997) Acute bacterial meningitis in children and adults. In: Scheld WM, Whitley RJ, Durack DT (eds) Infections of the central nervous system, 2nd edn. Lippincott-Raven Philadelphia, 335–416

    Google Scholar 

  • Rotbart HA (1997) Viral meningitis and the aseptic meningitis syndrome. In Scheld WM, Whitley RJ, Durack DT (eds) Infections of the central nervous system, 2nd edn. Lippincott-Raven Philadelphia, pp 23–46

    Google Scholar 

  • Roy R, Gupta RK, Kishore J, Taparia S, Poptani H, Bhakuni V (1996) High-resolution proton MR spectroscopy of the cerebral fluid from children with tuberculous meningitis. Proceedings of Annual Meeting of ISMRM, p 1157

    Google Scholar 

  • Sener RN (2001) Herpes simplex ensefalitis: diffusion MR imaging findings. Comput Med Imag Graph 25:391–397

    CAS  Google Scholar 

  • Shawl S (1995) Neurologic evaluation of patient with acute bacterial meningitis. Neurol Clin 13:549–577

    Google Scholar 

  • Smith RR, Caldemeyer KS (1999) Neuroradiologic review of intracranial infection. Curr Probl Diagn Radiol 28:1–26

    PubMed  CAS  Google Scholar 

  • Steiner I, Budka H, Chaudhuri A, Koskiniemi M, Sainio K, Salonen O, Kennedy PGE (2005) Viral encephalitis: a review of diagnostic methods and guidelines for management. Eur J Neurol 12:331–343

    PubMed  CAS  Google Scholar 

  • Sütlaş PN, Ünal A, Forta H, Şenol S, Kırbaş D (2003) Tuberculous meningitis in adults: review of 61 cases. Infection 6:387–391

    Google Scholar 

  • Suzer T, Coskun, Cirak B, Yagci B, Tahta K (2005) Brain stem abscesses in childhood. Childs Nerv Syst 21:27–31

    PubMed  CAS  Google Scholar 

  • Tsuchiya K, Inaoka S, Mizutana Y, Hachiya J (1997) Fast fluid-attenuated inversion-recovery MR of intracranial infections. AJNR Am J Neuroradiol 18:909–913

    PubMed  CAS  Google Scholar 

  • Tunkel AR (2000) Brain abscess. Curr Treat Options Infect Dis 2:449–460

    Google Scholar 

  • Whiteman MLH, Bowen BC, Post MJD, Bell M (2002) Intracranial infection. In: Atlas SW (ed) Magnetic resonance imaging of the brain and spine, 3rd edn. Lippincott-Raven, Philadelphia, pp 1099–1175

    Google Scholar 

  • Whitley RS (1997) HSV virus. In: Scheld WM, Whitley RJ, Durack DT (eds) Infections of the central nervous system, 2nd edn. Lippincott-Raven Philadelphia, pp 73–89

    Google Scholar 

  • Wilson JD, Castillo M (1994) Magnetic resonance imaging of granulomatous inflammations: sarcoidosis and tuberculosis. Top Magn Reson Imag 6:32–40

    CAS  Google Scholar 

  • Zeidman SM (2002) Pyogenic brain abscess. In: Osenbach RK, Zeidman SM (eds) Infections in neurological surgery: diagnosis and management, 1st edn. Lippincott-Raven, Philadelphia, pp 101–122

    Google Scholar 

  • Zuger A, Lowy FD (1997) Tuberculosis. In: Scheld WM, Whitley RJ, Durack DT (eds) infections of the central nervous system, 2nd edn. Lippincott-Raven Philadelphia, pp 417–443

    Google Scholar 

  • Abe K, Yorifuji S, Nishikawa Y (1993) Reduced isotope uptake restricted to the motor area in patients with amyotrophic lateral sclerosis. Neuroradiology 35:410–411

    PubMed  CAS  Google Scholar 

  • Bahn MM, Parchi P (1999) Abnormal diffusion-weighted magnetic resonance images in Creutzfeldt-Jakob disease. Arch Neurol 56:577–583

    PubMed  CAS  Google Scholar 

  • Ball MJ, Fisman M, Hachinski V, Blume W, Fox A, Kral VA, Kirshen AJ, Fox H, Merskey H (1985) A new definition of Alzheimer’s disease: a hippocampal dementia, Lancet 1:14–16

    Google Scholar 

  • Barboriak DP, Provenzale JM, Boyko OB (1994) MR diagnosis of Creutzfeldt-Jakob disease: significance of high signal intensity in the basal ganglia. Am J Roentgenol 162:137–140

    CAS  Google Scholar 

  • BradleyWG, Whittemore AR, Kortman KE, Watanabe AS et al (1991) Marked cerebrospinal fluid void: indicator of succesful shunt in patients with suspected normal-pressure hydrocephalus. Radiology 178:459–466

    PubMed  Google Scholar 

  • Corkill RG, Garnett MR, Blamire AM et al (2003) Multi-modal MRI in normal pressure hydrocephalus identifies pre-operative haemodynamic and diffusion coefficient changes in normal appearing white matter correlating with surgical outcome. Clin Neurol Neurosurg105:193–202

    Google Scholar 

  • Dahlbeck JW, McCluney KW, Yeakley JW, Fenstermacher MJ, Bonmati C, Van Horn G III, Aldag J (1991) The ineruncal distance: a new MR measurement for the hippocampal atrophy of Alzheimer disease. AJNR Am J Neuroradiol 12:931–932

    PubMed  CAS  Google Scholar 

  • Demaerel P, Baert AL, Vanopdenbosch L, Robberecht W, Dom R (1997) Diffusion-weighted magnetic resonance imaging in Creutzfeldt-Jakob disease. Lancet 22:847–848

    Google Scholar 

  • Di Rocco A, Molinari S, Stollman AL, Decker A, Yahr MD (1993) MRI abnormalities in Creutzfeldt-Jakob disease. Neuroradiology 35:584–585

    PubMed  Google Scholar 

  • Dickson DW (2001) Neuropathology of Pick’s disease. Neurology 56:S16–S20

    PubMed  CAS  Google Scholar 

  • Ellis CM, Simmons A, Jones DK, Bland J, Dawson JM, Horsfield MA, Williams SC, Leigh PN (1999) Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 53:1051–1058

    PubMed  CAS  Google Scholar 

  • Freidman DP, Tartaglino LM (1993) Amyotrophic lateral sclerosis: hyperintensity of the corticospinal tracts on MR images of the spinal cord. Am J Roentgenol 160:604–606

    Google Scholar 

  • George AE, de Leon MJ, Kalnin A, Rosner L, Goodgold A, Chase N (1986) Leukoencephalopathy in normal and pathologic aging: 2. MRI of brain lucencies. AJNR Am J Neuroradiol 7:567–570

    PubMed  CAS  Google Scholar 

  • George, AE, de Leon MJ et al (1990) CT diagnostic features of Alzheimer disease: importance of the choroidal/hippocampal fissure complex. AJNR Am J Neuroradiol 11:101–107

    PubMed  CAS  Google Scholar 

  • Golomb J, deLeon MJ, George AE, Kluger A, Convit A et al (1994) Hippocampal atrophy correlates with severe cognitive impairment in elderly patients with suspected normal pressure hydrocephalus. J Neurol Neurosurg Psychiatr 57:590–593

    PubMed  CAS  Google Scholar 

  • Goodin DS, Rowley HA, Olney RK (1988) Magnetic resonance imaging in amyotrophic lateral sclerosis. Ann Neurol 23:418–420

    PubMed  CAS  Google Scholar 

  • Graham GD, Petroff OA, Blamire AM, Rajkowska G, Goldman-Rakic P (1993) Proton magnetic resonance spectroscopy in Creutzfeldt-Jakob disease. Neurology 43:2065–2068

    PubMed  CAS  Google Scholar 

  • Graham JM, Papadakis N, Evans J, Widjaja E, Romanowski CA, Paley MN, Wallis LI, Wilkinson ID, Shaw PJ, Griffiths PD (2004) Diffusion tensor imaging for the assessment of upper motor neuron integrity in ALS. Neurology 63:2111–2119

    PubMed  CAS  Google Scholar 

  • Holodny AI, George AE, Golomb J, de Leon MJ, Kalnin AJ (1998a) The perihippocampal fissures: normal anatomy and disease states. Radiographics 18:653–665

    PubMed  CAS  Google Scholar 

  • Holodny AI, Waxman R, George AE, Rusinek H, Kalnin AJ, de Leon MJ (1998b) MR differential diagnosis of normal –pressure hydrocephalus and Alzheimer disease: significance of the perihippocampal fissures. AJNR Am J Neuroradiol 19:813–819

    PubMed  CAS  Google Scholar 

  • Hong YH, Lee KW, Sung JJ, Chang KH, Song IC (2004) Diffusion tensor MRI as a diagnostic tool of upper motor neuron involvement in amyotrophic lateral sclerosis. J Neurol Sci 227:73–78

    PubMed  Google Scholar 

  • Hyman BT, Van Hoesen GW, Damosia AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolated the hippocampus. Science 225:1168–1170

    PubMed  CAS  Google Scholar 

  • Ishikawa K, Nagura H, Yokota T, Yamanouchi H (1993) Signal loss in the motor cortex on magnetic resonance images in amyotrophic lateral sclerosis. Ann Neurol 33:218–222

    PubMed  CAS  Google Scholar 

  • Iwasaki Y, Kinoshita M, Ikeda K, Takamiya K, Shiojima T (1991) MRI in patients with amyotrophic lateral sclerosis: correlation with clinical features. Int J Neurosci 59:253–258

    PubMed  CAS  Google Scholar 

  • Jack CR, Petersen RC, O’Brien PC, Tangalos EG (1992) MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42:183–188

    PubMed  Google Scholar 

  • Joachim CL, Morris, JH Selkoe D (1988) Clinically diagnosed Alzheimer’s disease: autopsy neuropathological results in 150 cases. Ann Neurol 24:50–56

    PubMed  CAS  Google Scholar 

  • Kemper T (1984) Neuroanatomical and neuropathological changes in normal aging and in dementia. In: Albert ML (ed) Clinical neurology of aging. Oxford University Press, New York, pp 9–52

    Google Scholar 

  • Kido DK, Caine ED, LeMay M, Ekholm S, Booth H, Panzer R (1989) Temporal lobe atrophy in patients with Alzheimer disease: a CT study. AJNR Am J Neuroradiol 10:551–555

    PubMed  CAS  Google Scholar 

  • Lehericy S, Baulac M, Chiras J et al (1994) Amygdalohippocampal MR volume measurements in the early stages of Alzheimer disease. AJNR Am J Neuroradiol 15:929–937

    PubMed  CAS  Google Scholar 

  • LeMay M, Stafford JL, Sandor T, Albert M, Haykol H, Zamani A (1986) Statistical assessment of perceptual CT scan ratings in patients with Alzheimer’s-type dementia. J Comput Assist Tomogr 10:802–809

    PubMed  CAS  Google Scholar 

  • Leon MJ de, George AE, Stylopoulos LA et al ( 1989) Early marker for Alzheimer disease: The atrophic hippocampus. Lancet 2:672–673

    Google Scholar 

  • Leon MJ de, Golomb J, George AE et al (1983) The radiologic prediction of Alzheimer disease: the atrophic hippocampal formation. AJNR Am J Neuroradiol 14:897–906

    Google Scholar 

  • McKhann G (1984) Clinical diagnosis of Alzheimer’s disease. Neurology 34: 939–944

    PubMed  CAS  Google Scholar 

  • Milton WJ, Atkas SW, Lavi E, Mollman JE (1991) Magnetic resonance imaging of Creutzfeldt-Jakob disease. Ann Neurol 29:438–440

    PubMed  CAS  Google Scholar 

  • Monte SM de la (1989) Quantification of cerebral atrophy in pre-clinical and end-stage Alzheimer’s disease. Ann Neurol 25:450–459

    PubMed  Google Scholar 

  • Morris JC, McKeel DW Jr, Fulling K, Torack RM, Berg L (1988) Validation of clinical diagnostic criteria for Alzheimer’s disease. Ann Neurol 24:17–22

    PubMed  CAS  Google Scholar 

  • Mu Q, Xie J, Wen Z, Weng Y, Shuyun Z (1999) A quantitative study of the hippocampal formation, the amygdala and the temporal horn of the lateral ventricle in healthy subjects 40 to 90 years of age. AJNR Am J Neuroradiol 20:207–211

    PubMed  CAS  Google Scholar 

  • Narkiewicz O, de Leon MJ, Convit A, George AE, Wegiel J, Morys J, Bobinski M, Golomb J, Miller DC, Wisniewski HM (1993) Dilatation of the lateral part of the transverse fissure of the brain in Alzheimer disease. Acta Neurobiol Exp 53:457–465

    CAS  Google Scholar 

  • Oba H, Araki T, Ohtomo K, Monzawa S, Uchiyama G, Koizumi K et al (1993) Amyotrophic lateral sclerosis: T2 shortening in motor cortex at MR imaging. Radiology 189:843–846

    PubMed  CAS  Google Scholar 

  • Oliva D, Carella F, Savoiardo M, Strada L, Giovannini P, Tasta D et al (1993) Clinical and magnetic resonance features of the classical and akinetic-rigid variants of Huntington’s disease. Arch Neurol 50:17–19

    PubMed  CAS  Google Scholar 

  • Pantoni L, Garcia JH (1996) The significance of cerebral white matter abnormalities 110 years after Binswanger’s report. A review. Stroke 26:1293–1301

    Google Scholar 

  • Parazzini C, Mammi S, Comola M, Scotti G (2003) Magnetic resonance diffusion-weighted images in Creutzfeldt-Jakob disease: case report. Neuroradiology 45:50–52

    PubMed  Google Scholar 

  • Prince JL, Davis PB, Morris LC, White DL (1991) The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease, Neurobiol Aging 12:295–312

    Google Scholar 

  • Rose SE, Chen F, Chalk JB et al (2000) Loss of connectivity in Alzheimer’s disease: an evaluation of white matter tract integrity with color coded MR diffusion tensor imaging. J Neurol Neurosurg Psychiatr 69:528–530

    PubMed  CAS  Google Scholar 

  • Rossor MN (2001) Pick’s disease: a clinical overview. Neurology 56:S3–S5

    PubMed  CAS  Google Scholar 

  • Rusinek H, deLeon MJ, George AE et al (1991) Alzheimer disease: measuring loss of cerebral gray matter with MR imaging. Radiology 178:109–114

    PubMed  CAS  Google Scholar 

  • Sandor T, Albert M, Stafford J, Harpley S (1988) Use of computerized CT analysis to discriminate between Alzeimer patients and normal control subjects. AJNR 9:1181–1187

    PubMed  CAS  Google Scholar 

  • Savoiardo M, Strada L, Oliva D, Girotti F, D’Incerti L (1991) Abnormal MRI signal in the rigid form of Huntington’s disease. J Neurol Neurosurg Psychiatr 54:888–891

    PubMed  CAS  Google Scholar 

  • Tartaro A, Fulgente T, Delli Pizzi C et al (1993) MRI alterations as an early finding in Creutzfeldt-Jakob disease. Eur J Radiol 17:155–158

    PubMed  CAS  Google Scholar 

  • Tatsch K, Koch W, Linke R, Poepperl G, Peters N, Holtmannspoetter M, Dichgans M (2003) Cortical hypometabolism and crossed cerebellar diaschisis suggest subcortically induced disconnection in CADASIL: an 18F-FDG PET study. J Nucl Med 44:862–869

    PubMed  Google Scholar 

  • Terry RD, Peck A, DeTheresa R, Schecter R, Horoupian DS (1981) Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann Neurol 10:184–192

    PubMed  CAS  Google Scholar 

  • Tschampa HJ, Mürtz P, Flacke S, Paus S, Schild HH, Urbach H (2003) Thalamic involvement in sporadic Creutzfeldt-Jakob disease: a diffusion-weighted MR imaging study. AJNR Am J Neuroradiol 24:908–915

    PubMed  Google Scholar 

  • Udaka F, Sawada H, Seriu N, Shindou K, Nishitani N, Kameyama M (1992) MRI and SPECT findings in amyotrophic lateral sclerosis. Neuroradiology 34:389–393

    PubMed  CAS  Google Scholar 

  • van den Boom R, Lesnik Oberstein SA, Spilt A, Behloul F, Ferrari MD, Haan J, Westendorp RG, van Buchem MA (2003) Cerebral hemodynamics and white matter hyperintensities in CADASIL. J Cereb Blood Flow Metab 23:599–604

    PubMed  Google Scholar 

  • Yagashita A, Nakano I, Oda M, Hirano A (1994) Location of the corticospinal tract in the internal capsule at MR imaging. Radiology 191:455–460

    Google Scholar 

  • Arita K, Ikawa F, Kurisu K, Sumida M, Harada K, Uozumi T, Monden S, Yoshida J, Nishi Y (1999) The relationship between magnetic resonance imaging findings and clinical manifestations of hypothalamic hamartoma. J Neurosurg 91:212–220

    PubMed  CAS  Google Scholar 

  • Arslanoglu A, Cirak B, Horska A, Okoh J, Tihan T, Aronson L, Avellino AM, Burger PC, Yousem DM (2003) MR imaging characteristics of pilomyxoid astrocytomas. AJNR Am J Neuroradiol 24:1906–1908

    PubMed  Google Scholar 

  • Bartynski WS, Lin L (1997) Dynamic and conventional spin-echo MR of pituitary microlesions. AJNR Am J Neuroradiol 18:965–972

    PubMed  CAS  Google Scholar 

  • Batista D, Courkoutsakis NA, Oldfield EH, Griffin KJ, Keil M, Patronas NJ, Stratakis CA (2005) Detection of adrenocorticotropin-secreting pituitary adenomas by magnetic resonance imaging in children and adolescents with cushing disease. J Clin Endocrinol Metab 90:5134–5140

    PubMed  CAS  Google Scholar 

  • Bonneville F, Narboux Y, Cattin F, Rodiere E, Jacquet G, Bonneville JF (2002) Preoperative location of the pituitary bright spot in patients with pituitary macroadenomas. AJNR Am J Neuroradiol 23:528–532

    PubMed  Google Scholar 

  • Boyko OB, Curnes JT, Oakes WJ, Burger PC (1991) Hamartomas of the tuber cinereum: CT, MR, and pathologic findings. AJNR Am J Neuroradiol 12:309–314

    PubMed  CAS  Google Scholar 

  • Branch CL Jr, Laws ER Jr (1987) Metastatic tumors of the sella turcica masquerading as primary pituitary tumors. J Clin Endocrinol Metab 65:469–474

    PubMed  Google Scholar 

  • Bunin GR, Surawicz TS, Witman PA, Preston-Martin S, Davis F, Bruner JM (1998) The descriptive epidemiology of craniopharyngioma. J Neurosurg 89:547–551

    PubMed  CAS  Google Scholar 

  • Byun WM, Kim OL, Kim DS (2000) MR imaging findings of Rathke’s cleft cysts: significance of intracystic nodules. AJNR Am J Neuroradiol 21:485–488

    PubMed  CAS  Google Scholar 

  • Cottier JP, Destrieux C, Brunereau L, Bertrand P, Moreau L, Jan M, Herbreteau D (2000) Cavernous sinus invasion by pituitary adenoma: MR imaging. Radiology 215:463–469

    PubMed  CAS  Google Scholar 

  • Cox TD, Elster AD (1991) Normal pituitary gland: changes in shape, size, and signal intensity during the 1st year of life at MR imaging. Radiology 179:721–724

    PubMed  CAS  Google Scholar 

  • Davis WL, Lee JN, King BD, Harnsberger HR (1994) Dynamic contrast-enhanced MR imaging of the pituitary gland with fast spin-echo technique. J Magn Reson Imaging 4:509–511

    PubMed  CAS  Google Scholar 

  • De Marinis L, Bonadonna S, Bianchi A, Maira G, Giustina A (2005) Primary empty sella. J Clin Endocrinol Metab 90:5471–5477

    PubMed  Google Scholar 

  • Dietemann JL, Kehrli P, Maillot C, Diniz R, Reis M, Jr., Neugroschl C, Vinclair L (1998) Is there a dural wall between the cavernous sinus and the pituitary fossa? Anatomical and MRI findings. Neuroradiology 40:627–630

    PubMed  Google Scholar 

  • Dumas JL, Valeyre D, Chapelon-Abric C, Belin C, Piette JC, Tandjaoui-Lambiotte H, Brauner M, Goldlust D (2000) Central nervous system sarcoidosis: follow-up at MR imaging during steroid therapy. Radiology 21:4411–420

    Google Scholar 

  • Elster AD (1993a) Modern imaging of the pituitary. Radiology 1871–14

    Google Scholar 

  • Elster AD (1993b) Sellar susceptibility artifacts: theory and implications. AJNR Am J Neuroradiol 14:129–136

    PubMed  CAS  Google Scholar 

  • Elster AD (1994) High-resolution, dynamic pituitary MR imaging: standard of care or academic pastime? [Comment]. AJR Am J Roentgenol 16:3680–682

    Google Scholar 

  • Freda PU, Wardlaw SL, Post KD (1996) Unusual causes of sellar/parasellar masses in a large transsphenoidal surgical series. J Clin Endocrinol Metab 81:3455–3459

    PubMed  CAS  Google Scholar 

  • Fujisawa I, Kikuchi K, Nishimura K, Togashi K, Itoh K, Noma S, Minami S, Sagoh T, Hiraoka T, Momoi T et al (1987a) Transection of the pituitary stalk: development of an ectopic posterior lobe assessed with MR imaging. Radiology 165:487–489

    PubMed  CAS  Google Scholar 

  • Fujisawa I, Nishimura K, Asato R, Togashi K, Itoh K, Noma S, Kawamura Y, Sago T, Minami S, Nakano Y et al (1987b) Posterior lobe of the pituitary in diabetes insipidus: MR findings. J Comput Assist Tomogr 11:221–225

    PubMed  CAS  Google Scholar 

  • Fujisawa I, Morikawa M, Nakano Y, Konishi J (1988) Hemochromatosis of the pituitary gland: MR imaging. Radiology 168:213–214

    PubMed  CAS  Google Scholar 

  • Fujisawa I, Asato R, Kawata M, Sano Y, Nakao K, Yamada T, Imura H, Naito Y, Hoshino K, Noma S et al (1989) Hyperintense signal of the posterior pituitary on T1-weighted MR images: an experimental study. J Comput Assist Tomogr 13:371–377

    PubMed  CAS  Google Scholar 

  • Fujisawa I, Asato R, Okumura R, Nakano Y, Shibata T, Hamanaka D, Hashimoto T, Konishi J (1991) Magnetic resonance imaging of neurohypophyseal germinomas. Cancer 68:1009–1014

    PubMed  CAS  Google Scholar 

  • Fujisawa I, Murakami N, Furuto-Kato S, Araki N, Konishi J (1996) Plasma and neurohypophyseal content of vasopressin in diabetes mellitus. J Clin Endocrinol Metab 81:2805–2809

    PubMed  CAS  Google Scholar 

  • Fushimi Y, Miki Y, Ueba T, Kanagaki M, Takahashi T, Yamamoto A, Haque TL, Konishi J, Takahashi JA, Hashimoto N, Konishi J (2003) Liliequist membrane: three-dimensional constructive interference in steady state MR imaging. Radiology 229:360–365; discussion, 365

    PubMed  Google Scholar 

  • Fushimi Y, Miki Y, Takahashi JA, Kikuta K, Hashimoto N, Hanakawa T, Fukuyama H, Togashi K (2006) MR Imaging of Liliequist’s membrane. Radiat Med 24:85–90

    PubMed  Google Scholar 

  • Grossman R, Yousem D (2003) CNS anatomy: sella and central skull base. In: Thrall JH (ed) The requisites, 2nd edn. Mosby, St. Louis, pp 517–564

    Google Scholar 

  • Gsponer J, De Tribolet N, Deruaz JP, Janzer R, Uske A, Mirimanoff RO, Reymond MJ, Rey F, Temler E, Gaillard RC, Gomez F (1999) Diagnosis, treatment, and outcome of pituitary tumors and other abnormal intrasellar masses. Retrospective analysis of 353 patients. Medicine (Balt) 78:236–269

    CAS  Google Scholar 

  • Guermazi A, Lafitte F, Miaux Y, Adem C, Bonneville JF, Chiras J (2005) The dural tail sign—beyond meningioma. Clin Radiol 60:171–188

    PubMed  CAS  Google Scholar 

  • Hagiwara A, Inoue Y, Wakasa K, Haba T, Tashiro T, Miyamoto T (2003) Comparison of growth hormone-producing and non-growth hormone-producing pituitary adenomas: imaging characteristics and pathologic correlation. Radiology 228:533–538

    PubMed  Google Scholar 

  • Haque TL, Miki Y, Kashii S, Yamamoto A, Kanagaki M, Takahashi T, Fushimi Y, Asato R, Murase N, Shibasaki H, Konishi J (2004) Dynamic MR imaging in Tolosa-Hunt syndrome. Eur J Radiol 51:209–217

    PubMed  Google Scholar 

  • Honegger J, Buchfelder M, Fahlbusch R (1999) Surgical treatment of craniopharyngiomas: endocrinological results. J Neurosurg 90:251–257

    PubMed  CAS  Google Scholar 

  • Howarth DM, Gilchrist GS, Mullan BP, Wiseman GA, Edmonson JH, Schomberg PJ (1999) Langerhans cell histiocytosis: diagnosis, natural history, management, and outcome. Cancer 85:2278–2290

    PubMed  CAS  Google Scholar 

  • Hua F, Asato R, Miki Y, Okumura R, Hashimoto N, Kikuchi H, Konishi J (1992) Differentiation of suprasellar nonneoplastic cysts from cystic neoplasms by Gd-DTPA MRI. J Comput Assist Tomogr 16:744–749

    PubMed  CAS  Google Scholar 

  • Imura H, Nakao K, Shimatsu A, Ogawa Y, Sando T, Fujisawa I, Yamabe H (1993) Lymphocytic infundibuloneurohypophysitis as a cause of central diabetes insipidus. N Engl J Med 329:683–689

    PubMed  CAS  Google Scholar 

  • Kaido T, Sasaoka Y, Hashimoto H, Taira K (2003) De novo germinoma in the brain in association with Klinefelter’s syndrome: case report and review of the literature. Surg Neurol 60:553–558; discussion, 559

    PubMed  Google Scholar 

  • Kanagaki M, Miki Y, Takahashi JA, Shibamoto Y, Takahashi T, Ueba T, Hashimoto N, Konishi J (2004b) MRI and CT findings of neurohypophyseal germinoma. Eur J Radiol 49:204–211

    PubMed  Google Scholar 

  • Kaufmann TJ, Lopes MB, Laws ER, Jr., Lipper MH (2002) Primary sellar lymphoma: radiologic and pathologic findings in two patients. AJNR Am J Neuroradiol 23:364–367

    PubMed  Google Scholar 

  • Kiortsis D, Xydis V, Drougia AG, Argyropoulou PI, Andronikou S, Efremidis SC, Argyropoulou MI (2004) The height of the pituitary in preterm infants during the first 2 years of life: an MRI study. Neuroradiology 46:224–226

    PubMed  CAS  Google Scholar 

  • Korogi Y, Takahashi M, Sakamoto Y, Shinzato J (1991) Cavernous sinus: correlation between anatomic and dynamic gadolinium-enhanced MR imaging findings. Radiology 180:235–237

    PubMed  CAS  Google Scholar 

  • Kucharczyk W, Davis DO, Kelly WM, Sze G, Norman D, Newton TH (1986) Pituitary adenomas: high-resolution MR imaging at 1.5 T. Radiology 161:761–765

    PubMed  CAS  Google Scholar 

  • Kucharczyk W, Peck WW, Kelly WM, Norman D, Newton TH (1987) Rathke cleft cysts: CT, MR imaging, and pathologic features. Radiology 165:491–495

    PubMed  CAS  Google Scholar 

  • Kucharczyk W, Bishop JE, Plewes DB, Keller MA, George S (1994) Detection of pituitary microadenomas: comparison of dynamic keyhole fast spin-echo, unenhanced, and conventional contrast-enhanced MR imaging. AJR Am J Roentgenol 163:671–679

    PubMed  CAS  Google Scholar 

  • Kucharczyk W, Montanera WJ, Becker LE (1996) The sella turcica and parasellar region. In: Atlas SW(ed) Magnetic resonance imaging of the brain and spine, 2nd edn. Lippincott-Raven, Philadelphia, pp 871–930

    Google Scholar 

  • Listernick R, Charrow J, Gutmann DH (1999) Intracranial gliomas in neurofibromatosis type 1. Am J Med Genet 89:38–44

    PubMed  CAS  Google Scholar 

  • Maghnie M, Cosi G, Genovese E, Manca-Bitti ML, Cohen A, Zecca S, Tinelli C, Gallucci M, Bernasconi S, Boscherini B, Severi F, Arico M (2000) Central diabetes insipidus in children and young adults. N Engl J Med 343:998–1007

    PubMed  CAS  Google Scholar 

  • Matsuno H, Rhoton AL, Jr., Peace D (1988) Microsurgical anatomy of the posterior fossa cisterns. Neurosurgery 23:58–80

    Google Scholar 

  • McCormick PC, Post KD, Kandji AD, Hays AP (1989) Metastatic carcinoma to the pituitary gland. Br J Neurosurg 3:71–79

    PubMed  CAS  Google Scholar 

  • McMaster ML, Goldstein AM, Bromley CM, Ishibe N, Parry DM (2001) Chordoma: incidence and survival patterns in the United States, 1973–1995. Cancer Causes Control 12:1–11

    PubMed  CAS  Google Scholar 

  • Medlock MD, Madsen JR, Barnes PD, Anthony DS, Cohen LE, Scott RM (1997) Optic chiasm astrocytomas of childhood. 1. Long-term follow-up. Pediatr Neurosurg 27:121–128

    PubMed  CAS  Google Scholar 

  • Meyer FB, Lombardi D, Scheithauer B, Nichols DA (1990) Extra-axial cavernous hemangiomas involving the dural sinuses. J Neurosurg 73:187–192

    PubMed  CAS  Google Scholar 

  • Miki Y, Matsuo M, Nishizawa S, Kuroda Y, Keyaki A, Makita Y, Kawamura J (1990) Pituitary adenomas and normal pituitary tissue: enhancement patterns on gadopentetate-enhanced MR imaging. Radiology 177:35–38

    PubMed  CAS  Google Scholar 

  • Miki Y, Asato R, Okumura R, Hua F, Konishi J (1992) Contrast enhanced area of posterior pituitary gland in early dynamic MRI exceeds hyperintense area on T1-weighted images. J Comput Assist Tomogr 16:845–848

    PubMed  CAS  Google Scholar 

  • Miki Y, Asato R, Hashimoto N, Konishi J (1999) Ectopic posterior pituitary in macroadenomas: demonstration by dynamic MR imaging. Book of Abstracts, 7th Annual Meeting of Internal Society for Magnetic Resonance in Medicine, May 22nd-28th, 1999, Philadelphia, p. 913

    Google Scholar 

  • Miki Y, Kanagaki M, Takahashi JA, Ishizu K, Nakagawa M, Yamamoto A, Fushimi Y, Okada T, Mikuni N, Kikuta K, Hashimoto N, Togashi K (2007) Evaluation of pituitary macroadenomas with multidetector-row CT (MDCT): comparison with MR imaging. Neuroradiology 49:327–333

    PubMed  Google Scholar 

  • Miki Y, Kataoka ML, Shibata T, Haque TL, Kanagaki M, Shimono T, Okada T, Hiraga A, Nishizawa S, Ueda H, Rahman M, Konishi J (2005) The pituitary gland: changes on MR images during the 1st year after delivery. Radiology 235:999–1004

    PubMed  Google Scholar 

  • Moses AM, Clayton B, Hochhauser L (1992) Use of T1-weighted MR imaging to differentiate between primary polydipsia and central diabetes insipidus. AJNR Am J Neuroradiol 13:1273–1277

    PubMed  CAS  Google Scholar 

  • Nagahata M, Hosoya T, Kayama T, Yamaguchi K (1998) Edema along the optic tract: a useful MR finding for the diagnosis of craniopharyngiomas. AJNR Am J Neuroradiol 19:1753–1757

    PubMed  CAS  Google Scholar 

  • Osorio MG, Marui S, Jorge AA, Latronico AC, Lo LS, Leite CC, Estefan V, Mendonca BB, Arnhold IJ (2002) Pituitary magnetic resonance imaging and function in patients with growth hormone deficiency with and without mutations in GHRH-R, GH-1, or PROP-1 genes. J Clin Endocrinol Metab 87:5076–5084

    PubMed  CAS  Google Scholar 

  • Rand T, Lippitz P, Kink E, Huber H, Schneider B, Imhof H, Trattnig S (2002) Evaluation of pituitary microadenomas with dynamic MR imaging. Eur J Radiol 41:131–135

    PubMed  Google Scholar 

  • Rodriguez O, Mateos B, de la Pedraja R, Villoria R, Hernando JI, Pastor A, Pomposo I, Aurrecoechea J (1996) Postoperative follow-up of pituitary adenomas after trans-sphenoidal resection: MRI and clinical correlation. Neuroradiology 38:747–754

    PubMed  CAS  Google Scholar 

  • Rogg JM, Tung GA, Anderson G, Cortez S (2002) Pituitary apoplexy: early detection with diffusion-weighted MR imaging. AJNR Am J Neuroradiol 23:1240–1245

    PubMed  Google Scholar 

  • Rosenblum MK, Matsutani M, Van Meir EG (2000) CNS germ cell tumours. In: Kleihues P, Cavenee W (eds) Pathology and genetics tumours of the nervous system. IARC, Lyon, pp 208–214

    Google Scholar 

  • Saeki N, Hoshi S, Sunada S, Sunami K, Murai H, Kubota M, Tatsuno I, Iuchi T, Yamaura A (2002) Correlation of high signal intensity of the pituitary stalk in macroadenoma and postoperative diabetes insipidus. AJNR Am J Neuroradiol 23:822–827

    PubMed  Google Scholar 

  • Saeki N, Uchino Y, Murai H, Kubota M, Isobe K, Uno T, Sunami K, Yamaura A (2003) MR imaging study of edema-like change along the optic tract in patients with pituitary region tumors. AJNR Am J Neuroradiol 24:336–342

    PubMed  Google Scholar 

  • Sakurai K, Fujita N, Harada K, Kim SW, Nakanishi K, Kozuka T (1992) Magnetic susceptibility artifact in spin-echo MR imaging of the pituitary gland. AJNR Am J Neuroradiol 13:1301–1308

    PubMed  CAS  Google Scholar 

  • Sartoretti-Schefer S, Wichmann W, Aguzzi A, Valavanis A (1997) MR differentiation of adamantinous and squamous-papillary craniopharyngiomas. AJNR Am J Neuroradiol 18:77–87

    PubMed  CAS  Google Scholar 

  • Sato N, Ishizaka H, Matsumoto M, Matsubara K, Tsushima Y, Tomioka K (1991) MR detectability of posterior pituitary high signal and direction of frequency encoding gradient. J Comput Assist Tomogr 15:355–358

    PubMed  CAS  Google Scholar 

  • Sato N, Ishizaka H, Yagi H, Matsumoto M, Endo K (1993) Posterior lobe of the pituitary in diabetes insipidus: dynamic MR imaging. Radiology 186:357–360

    PubMed  CAS  Google Scholar 

  • Sato N, Endo K, Kawai H, Shimada A, Hayashi M, Inoue T (1995a) Hemodialysis: relationship between signal intensity of the posterior pituitary gland at MR imaging and level of plasma antidiuretic hormone. Radiology 194:277–280

    PubMed  CAS  Google Scholar 

  • Sato N, Tanaka S, Tateno M, Ohya N, Takata K, Endo K (1995b) Origin of posterior pituitary high intensity on T1-weighted magnetic resonance imaging. Immunohistochemical, electron microscopic, and magnetic resonance studies of posterior pituitary lobe of dehydrated rabbits. Invest Radiol 30:567–571

    PubMed  CAS  Google Scholar 

  • Sato N, Putman CM, Chaloupka JC, Glenn BJ, Vinuela F, Sze G (1997) Pituitary gland enlargement secondary to dural arteriovenous fistula in the cavernous sinus: appearance at MR imaging. Radiology 203:263–267

    PubMed  CAS  Google Scholar 

  • Sato N, Sze G, Endo K (1998) Hypophysitis: endocrinologic and dynamic MR findings. AJNR Am J Neuroradiol 19:439–444

    PubMed  CAS  Google Scholar 

  • Schubiger O, Haller D (1992) Metastases to the pituitary—hypothalamic axis. An MR study of 7 symptomatic patients. Neuroradiology 34:131–134

    PubMed  CAS  Google Scholar 

  • Seltzer S, Mark AS, Atlas SW (1991) CNS sarcoidosis: evaluation with contrast-enhanced MR imaging. AJNR Am J Neuroradiol 12:1227–1233

    PubMed  CAS  Google Scholar 

  • Shimono T, Hatabu H, Kasagi K, Miki Y, Nishizawa S, Misaki T, Hiraga A, Konishi J (1999) Rapid progression of pituitary hyperplasia in humans with primary hypothyroidism: demonstration with MR imaging. Radiology 213:383–388

    PubMed  CAS  Google Scholar 

  • Sohn CH, Kim SP, Kim IM, Lee JH, Lee HK (2003) Characteristic MR imaging findings of cavernous hemangiomas in the cavernous sinus. AJNR Am J Neuroradiol 24:1148–1151

    PubMed  Google Scholar 

  • Sparacia G, Iaia A, Banco A, D’Angelo P, Lagalla R (2000) Transfusional hemochromatosis: quantitative relation of MR imaging pituitary signal intensity reduction to hypogonadotropic hypogonadism. Radiology 215:818–823

    PubMed  CAS  Google Scholar 

  • Suzuki M, Matsui O, Ueda F, Matsushita T, Fujinaga Y, Kobayashi K, Horichi Y, Hayashi Y, Tachibana O, Yamashita J (2005) Dynamic MR imaging for diagnosis of lesions adjacent to pituitary gland. Eur J Radiol 53:159–167

    PubMed  Google Scholar 

  • Sze G, Uichanco LS III, Brant-Zawadzki MN, Davis RL, Gutin PH, Wilson CB, Norman D, Newton TH (1988) Chordomas: MR imaging. Radiology 166:187–191

    PubMed  CAS  Google Scholar 

  • Takahashi T, Miki Y, Takahashi JA, Kanagaki M, Yamamoto A, Fushimi Y, Okada T, Haque TL, Hashimoto N, Konishi J, Togashi K (2005) Ectopic posterior pituitary high signal in preoperative and postoperative macroadenomas: dynamic MR imaging. Eur J Radiol 55:84–91

    PubMed  Google Scholar 

  • Taketomi A, Sato N, Aoki J, Endo K (2004) The effects of frequency-encoding gradient upon detectability of the margins and height measurements of normal adult pituitary glands. Neuroradiology 46:60–64

    PubMed  CAS  Google Scholar 

  • Tsunoda A, Okuda O, Sato K (1997) MR height of the pituitary gland as a function of age and sex: especially physiological hypertrophy in adolescence and in climacterium. AJNR Am J Neuroradiol 18:551–554

    PubMed  CAS  Google Scholar 

  • Wolansky LJ, Gallagher JD, Heary RF, Malantic GP, Dasmahapatra A, Shaderowfsky PD, Budhwani N (1997) MRI of pituitary abscess: two cases and review of the literature. Neuroradiology 39:499–503

    PubMed  CAS  Google Scholar 

  • Yagi H, Nagashima K, Miyake H, Tamai S, Onigata K, Yutani S, Kuroume T (1994) Familial congenital hypopituitarism with central diabetes insipidus. J Clin Endocrinol Metab 78:884–889

    PubMed  CAS  Google Scholar 

  • Yagi A, Sato N, Taketomi A, Nakajima T, Morita H, Koyama Y, Aoki J, Endo K (2005) Normal cranial nerves in the cavernous sinuses: contrast-enhanced three-dimensional constructive interference in the steady state MR imaging. AJNR Am J Neuroradiol 26:946–950

    PubMed  Google Scholar 

  • Yoon PH, Kim DI, Jeon P, Lee SI, Lee SK, Kim SH (2001) Pituitary adenomas: early postoperative MR imaging after transsphenoidal resection. AJNR Am J Neuroradiol 22:1097–1104

    PubMed  CAS  Google Scholar 

  • Abe T, Kawamura N, Homma H, Sasaki K, Izumiyama H, Matsumoto K (2000) MRI of orbital schwannomas. Neuroradiology 42:466–468

    PubMed  CAS  Google Scholar 

  • Akansel G, Hendrix L, Erickson BA, Demirci A, Papke A, Arslan A, Ciftci E (2005) MRI patterns in orbital malignant lymphoma and atypical lymphocytic infiltrates. Eur J Radiol 53:175–181

    PubMed  Google Scholar 

  • Albert DM, Rubenstein RA, Scheie HG (1967) Tumour metastases to the eye: 1. Incidence in 213 adult patients with generalized malignancy. Am J Ophthalmol 63:723–726

    PubMed  CAS  Google Scholar 

  • Astrup J (2003) Natural history and clinical management of optic pathway glioma. Br J Neurosurg 17:327–335

    PubMed  CAS  Google Scholar 

  • Barkovich AJ, Latal-Hajnal B, Partridge JC, Sola A, Ferriero DM (1997) MR contrast enhancement of the normal neonatal brain. Am J Neuroradiol 18:1713–1717

    PubMed  CAS  Google Scholar 

  • Born C, Rademaker J, Hosten N Felix R (2001) Hemorrhagic cavernoma or ruptured dermoid of the orbit: diagnosis with MRI. Orbit 20: 291–295

    PubMed  Google Scholar 

  • Calle CA, Castillo IG, Eagle RC, Daza MT (2006) Oncocytoma of the lacrimal gland: case report and review of the literature. Orbit 25:243–247

    PubMed  Google Scholar 

  • Grannemann D, Zwicker C, Langer M (1988) (Diagnosis of orbital space-occupying lesions-a comparison of magnetic resonance imaging and computerized tomography). Fortschr Ophthalmol 192: 327–329

    Google Scholar 

  • Hesselink JR, Szumoswski J Tien RD (1991) MR fat suppression combined with Gd-DTPA enhancement in optic neuritis and perineuritis. J Comput Assist Tomogr 15:223–227

    PubMed  Google Scholar 

  • Higer HP, Just M, Kahaly G et al. (1991) Graves ophthalmopathy: role of MR imaging in radiation therapy. Radiology 179:187–190

    PubMed  Google Scholar 

  • Hoffmann KT, Hosten N, Lemke AJ, Sander B, Zwicker C, Felix R (1998) Septum orbitale: high-resolution MR in orbital anatomy. Am J Neuroradiol 19:91–94

    PubMed  CAS  Google Scholar 

  • Hosten N, Beckrakis NE, Lietz A, Noske W (1993) Endokrine Orbitopathie. Korrelation magnetresonanztomographischer und histopathologischer Befunde. Fortschr Röntgenstr 159:304–306

    CAS  Google Scholar 

  • Hosten N, Bornfeld N, Fellix R, Lemke AJ, Sander B, Waßmuth R (1997) MR of the eye with retrobulbar anesthesia. Am J Neurorad 18:1788–1790

    CAS  Google Scholar 

  • Hosten N, Bornfeld N, Felix R, Foerster P, Hoffmann KT, Lemke AJ, Schüler A, Strosczcynski C, Wiegel T (1998) Choroidal haemangioma: MR findings and differentiation from uveal melanoma. Am J Neurorad 19:1441–1447

    Google Scholar 

  • Hosten N, Cordes M, Sander B et al (1989) Graves’ ophthalmopathy: MR imaging of the orbits. Radiology 172:759–762

    PubMed  CAS  Google Scholar 

  • Hosten N, Lietz A, Zwicker C et al (1991) Lymphozytäre Infiltrationen der Orbita in MRT und CT: Lymphom, Pseudolymphom und entzündlicher Pseudotumor. Fortschr Röntgenstr 155/5:445–451

    Google Scholar 

  • Hosten N, Lietz A, Schörner W, Wenzel KW (1992) Der Krankheitsverlauf bei der endokrinen Orbitopathie: Magnetresonanztomographische Dokumentation. Fortschr Röntgenstr 157:210–214

    CAS  Google Scholar 

  • Kim JH, Hwang JM (2006) Imaging of the superior rectus in superior rectus overaction after retrobulbar anesthesia. Ophthalmology 113: 1681–1684

    PubMed  Google Scholar 

  • Lemke AJ, Hosten N, Bechrakis NE, Bornfeld N, Felix R, Gurvit Ö, Richer M, Schüler A, Stroszczynski C (1999) Histopathological-radiological correlation of choroidal melanoma using high resolution MRI with a surface coil. Radiology 210: 775–783

    PubMed  CAS  Google Scholar 

  • Lemke AJ, Kazi I, Landeck LM, Zaspel U, Hosten N, Felix R (2004) Differenzialdiagnostik intrakonaler orbitaler Raumforderungen unter Verwendung der hochauflösenden MRT mit Oberflächenspulen anhand von 78 Patienten. Fortschr Röntgenstr 176:1436–1446

    Google Scholar 

  • Lemke AJ, Alai-Omid M, Hengst Sa, Kazi I, Felix R (2006a) Eye imaging with a 3.0-T MRI using a surface coil—a study on volunteers and initial patients with uveal melanoma. Eur Radiol 16:1048–1049

    Google Scholar 

  • Lemke AJ, Kazi I, Mergner U et al (2007) Retinoblastoma—MR appearance using a surface coil in comparison with histopathological results. Eur Radiol 17:49–60

    PubMed  Google Scholar 

  • Miller NR (2004) Primary tumours of the optic nerve and its sheath. Eye 18:1026–1037

    PubMed  CAS  Google Scholar 

  • Moster ML. Detection and treatment of optic nerve sheath meningioma (2005) Curr Neurol Neurosci Rep 5:367–75

    Google Scholar 

  • Schueler AO, Hosten N, Bechrakis NE, Lemke AJ, Foerster P, Felix R, Foerster MH, Bornfeld N (2003) High-resolution magnetic resonance imaging of retinoblastoma. Br J Ophthalmol 87:330–335

    PubMed  CAS  Google Scholar 

  • Smirniotopolous JG, Chiechi MV (1995) Teratomas, dermoids, and epidermoids of the head and neck. Radiographics 15:1437–1455

    Google Scholar 

  • Tanaka A, Mihara F, Yoshiura T, Togao O, Kuwabara Y, Natori Y, Sasaki T, Honda H (2004) Differentiation of cavernous haemangioma from schwannoma of the orbit: a dynamic MRI study. Am J Roentgenol 183:1799–1804

    Google Scholar 

  • Thiagalingam S, Flaherty M, Billson F, North K (2004) Neurofibromatosis type 1 and optic pathway gliomas: follow-up of 54 patients. Ophthalmology 111:568–577

    PubMed  Google Scholar 

  • Yan J, Wu Z (2004) Cavernous haemangioma of the orbit: analysis of 214 cases. Orbit 23:33–40

    PubMed  CAS  Google Scholar 

  • Aikele P, Kittner T, Offergeld C, Kaftan H, Huttenbrink KB, Laniado M (2003) Diffusion-weighted MR imaging of cholesteatoma in pediatric and adult patients who have undergone middle ear surgery. AJR Am J Roentgenol 181:261–265

    PubMed  CAS  Google Scholar 

  • Ayache D, Williams MT, Lejeune D, Corre A (2005) Usefulness of delayed postcontrast magnetic resonance imaging in the detection of residual cholesteatoma after canal wall-up tympanoplasty. Laryngoscope 115:607–610

    PubMed  CAS  Google Scholar 

  • Berg R van den, Schepers A, de Bruine FT, Liauw L, Mertens BJ, van der Mey AG, van Buchem MA (2004) The value of MR angiography techniques in the detection of head and neck paragangliomas. Eur J Radiol 52:240–245

    PubMed  Google Scholar 

  • Bonneville F, Sarrazin JL, Marsot-Dupuch K, Iffenecker C, Cordoliani YS, Doyon D, Bonneville JF (2001) Unusual lesions of the cerebellopontine angle: a segmental approach. Radiographics 21:419–438

    PubMed  CAS  Google Scholar 

  • Caldemeyer KS, Mathews VP, Azzarelli B, Smith RR (1997) The jugular foramen: a review of anatomy, masses, and imaging characteristics. Radiographics 17:1123–1139

    PubMed  CAS  Google Scholar 

  • Casselman JW, Offeciers FE, Govaerts PJ, Kuhweide R, Geldof H, Somers T, D’Hont G (1997) Aplasia and hypoplasia of the vestibulocochlear nerve: diagnosis with MR imaging. Radiology 202:773–781

    PubMed  CAS  Google Scholar 

  • Danesi G, Panizza B, Mazzoni A, Calabrese V (2000) Anterior approaches in juvenile nasopharyngeal angiofibromas with intracranial extension. Otolaryngol Head Neck Surg 122:277–283

    PubMed  CAS  Google Scholar 

  • Davis WL, Harnsberger HR (1991) MR angiography of an aberrant internal carotid artery. AJNR Am J Neuroradiol 12:1225

    PubMed  CAS  Google Scholar 

  • De Vos C, Gerard JM, Decat M, Gersdorff M (2005) Metastatic renal cell carcinoma to the temporal bone: case report. B-ENT 1:43–46

    PubMed  Google Scholar 

  • Farina D, Hermans R, Lemmerling M, Op Beeck K (1999) Imaging of the parapharyngeal space. JBR-BTR 82:234–239

    PubMed  CAS  Google Scholar 

  • Giangaspero F, Burger PC, Osborne DR, Stein RB (1984) Suprasellar papillary squamous epithelioma (“papillary craniopharyngioma”). Am J Surg Pathol 8:57–64

    PubMed  CAS  Google Scholar 

  • Ginsberg LE, DeMonte F (1999) Diagnosis please. Case 16: facial nerve schwannoma with middle cranial fossa involvement. Radiology 213:364–368

    PubMed  CAS  Google Scholar 

  • Held P, Fellner C, Fellner F, Seitz J, Graf S, Hilbert M, Strutz J (1997) MRI of inner ear and facial nerve pathology using 3D MP-RAGE and 3D CISS sequences. Br J Radiol 70:558–566

    PubMed  CAS  Google Scholar 

  • Howells RC, Ramadan HH (2001) Usefulness of computed tomography and magnetic resonance in fulminant invasive fungal rhinosinusitis. Am J Rhinol 15:255–261

    PubMed  CAS  Google Scholar 

  • Kawahara Y, Niiro M, Yokoyama S, Kuratsu J (2001) Dural congestion accompanying meningioma invasion into vessels: the dural tail sign. Neuroradiology 43:462–465

    PubMed  CAS  Google Scholar 

  • Kennard CD, Rasmussen JE (1990) Congenital midline nasal masses: diagnosis and management. J Dermatol Surg Oncol 16:1025–1036

    PubMed  CAS  Google Scholar 

  • Kilickesmez O (2006) Endolymphatic sac tumor in a patient with von Hippel-Lindau disease: MR imaging findings. Diagn Interv Radiol 12:14–16

    PubMed  Google Scholar 

  • Laudadio P, Canani FB, Cunsolo E (2004) Meningioma of the internal auditory canal. Acta Otolaryngol 124:1231–1234

    PubMed  CAS  Google Scholar 

  • Lee B, Fatterpekar GM, Kim W, Som PM (2002) Granulocytic sarcoma of the temporal bone. AJNR Am J Neuroradiol 23:1497–1499

    PubMed  CAS  Google Scholar 

  • Lee YH, Lee NJ, Kim JH, Song JJ (2005) CT, MRI and gallium SPECT in the diagnosis and treatment of petrous apicitis presenting as multiple cranial neuropathies. Br J Radiol 78:948–951

    PubMed  CAS  Google Scholar 

  • Lenz M, Greess H, Dobritz M, Kersting-Sommerhoff B (2000) Methods: MRT. Eur J Radiol 33:178–184

    PubMed  CAS  Google Scholar 

  • Lowe LH, Booth TN, Joglar JM, Rollins NK. Midface anomalies in children. Radiographics 20:907–922; quiz 1106–1107, 1112

    Google Scholar 

  • Mafee MF, Lachenauer CS, Kumar A, Arnold PM, Buckingham RA, Valvassori GE (1990) CT and MR imaging of intralabyrinthine schwannoma: report of two cases and review of the literature. Radiology 174:395–400

    PubMed  CAS  Google Scholar 

  • Maroldi R, Nicolai P (2005) Imaging in treatment planning for sinonasal diseases. Springer, Berlin Heidelberg, New York

    Google Scholar 

  • Maroldi R, Farina D, Palvarini L, Marconi A, Gadola E, Menni K, Battaglia G (2001) Computed tomography and magnetic resonance imaging of pathologic conditions of the middle ear. Eur J Radiol 40:78–93

    PubMed  CAS  Google Scholar 

  • Maroldi R, Farina D, Palvarini L, Lombardi D, Tomenzoli D, Nicolai P (2004) Magnetic resonance imaging findings of inverted papilloma: differential diagnosis with malignant sinonasal tumors. Am J Rhinol 18:305–310

    PubMed  Google Scholar 

  • Meyers SP, Hirsch WL, Jr., Curtin HD, Barnes L, Sekhar LN, Sen C (1992) Chordomas of the skull base: MR features. AJNR Am J Neuroradiol 13:1627–1636

    PubMed  Google Scholar 

  • Mukherji SK, Albernaz VS, Lo WW, Gaffey MJ, Megerian CA, Feghali JG, Brook A, Lewin JS, Lanzieri CF, Talbot JM, Meyer JR, Carmody RF, Weissman JL, Smirniotopoulos JG, Rao VM, Jinkins JR, Castillo M (1997) Papillary endolymphatic sac tumors: CT, MR imaging, and angiographic findings in 20 patients. Radiology 202:801–808

    PubMed  CAS  Google Scholar 

  • Nagai M, Yamada H, Kitamoto M, Ikeda J, Mori Y, Monzen Y, Fukuhara T (2005) Facial nerve palsy due to temporal bone metastasis from hepatocellular carcinoma. J Gastroenterol Hepatol 20:1131–1132

    PubMed  Google Scholar 

  • Naidich TP, Altman NR, Braffman BH, McLone DG, Zimmerman RA (1992) Cephaloceles and related malformations. AJNR Am J Neuroradiol 13:655–690

    PubMed  CAS  Google Scholar 

  • Ojiri H, Ujita M, Tada S, Fukuda K (2000) Potentially distinctive features of sinonasal inverted papilloma on MR imaging. AJR Am J Roentgenol 175:465–468

    PubMed  CAS  Google Scholar 

  • Parmar HA, Sitoh YY (2005) Diffusion-weighted imaging findings in central skull base osteomyelitis with pharyngeal abscess formation. AJR Am J Roentgenol 184:1363–1364

    PubMed  Google Scholar 

  • Rao AB, Koeller KK, Adair CF (1999) From the archives of the AFIP. Paragangliomas of the head and neck: radiologic-pathologic correlation. Armed Forces Institute of Pathology. Radiographics 19:1605–1632

    PubMed  CAS  Google Scholar 

  • Roll JD, Urban MA, Larson TC III, Gailloud P, Jacob P, Harnsberger HR (2003) Bilateral aberrant internal carotid arteries with bilateral persistent stapedial arteries and bilateral duplicated internal carotid arteries. AJNR Am J Neuroradiol 24:762–765

    PubMed  Google Scholar 

  • Sartoretti-Schefer S, Wichmann W, Aguzzi A, Valavanis A (1997) MR differentiation of adamantinous and squamous-papillary craniopharyngiomas. AJNR Am J Neuroradiol 18:77–87

    PubMed  CAS  Google Scholar 

  • Silbergleit R, Quint DJ, Mehta BA, Patel SC, Metes JJ, Noujaim SE (2000) The persistent stapedial artery. AJNR Am J Neuroradiol 21:572–527

    PubMed  CAS  Google Scholar 

  • Som PM, Dillon WP, Fullerton GD, Zimmerman RA, Rajagopalan B, Marom Z (1989) Chronically obstructed sinonasal secretions: observations on T1 and T2 shortening. Radiology 72:515–520

    Google Scholar 

  • Thiers FA, Sakai O, Poe DS, Curtin HD (2000) Persistent stapedial artery: CT findings. AJNR Am J Neuroradiol 21:1551–1554

    PubMed  CAS  Google Scholar 

  • Trimarchi M, Gregorini G, Facchetti F, Morassi ML, Manfredini C, Maroldi R, Nicolai P, Russell KA, McDonald TJ, Specks U (2001) Cocaine-induced midline destructive lesions: clinical, radiographic, histopathologic, and serologic features and their differentiation from Wegener granulomatosis. Medicine (Balt) 80:391–404

    CAS  Google Scholar 

  • Vogl TJ, Juergens M, Balzer JO, Mack MG, Bergman C, Grevers G, Lissner J, Felix R (1994) Glomus tumors of the skull base: combined use of MR angiography and spin-echo imaging. Radiology 192:103–110

    PubMed  CAS  Google Scholar 

  • Wu ZB, Yu CJ, Guan SS (2005) Posterior petrous meningiomas: 82 cases. J Neurosurg 102:284–289

    PubMed  Google Scholar 

  • Yang CW, Carr JC, Futterer SF, Morasch MD, Yang BP, Shors SM, Finn JP (2005) Contrast-enhanced MR angiography of the carotid and vertebrobasilar circulations. AJNR Am J Neuroradiol 26:2095–2101

    PubMed  Google Scholar 

  • Harnsberger HR et al (eds) (2004) Diagnostic imaging: head and neck. Amirsys, Salt Lake City

    Google Scholar 

  • Kirchner JA (1998) Atlas on the surgical anatomy of laryngeal cancer. Singular, San Diego

    Google Scholar 

  • Som PM, Curtin HD, Mancuso AA (2000) Imaging-based nodal classification for evaluation of neck metastatic adenopathy. AJR Am J Roentgenol 174:837

    PubMed  CAS  Google Scholar 

  • Som PM et al (eds) (2003) Head and neck imaging, 4th edn. Mosby, St. Louis

    Google Scholar 

  • Stambuk HE, Karimi S, Lee N, Patel SG (2007) Oral cavity and oropharynx tumors. Radiol Clin N Am 1:1–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wintermark, M. et al. (2008). Brain, Head, and Neck. In: Reiser, M., Semmler, W., Hricak, H. (eds) Magnetic Resonance Tomography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29355-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-29355-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29354-5

  • Online ISBN: 978-3-540-29355-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics