Skip to main content

Abstract

Functional MRI (fMRI) allows non-invasive indirect measurement of neuronal activity and imaging of activated cortical areas. Measurements are based on the fact that brain stimulation is correlated with an increased local brain metabolism. This metabolic activity causes local changes of the magnetic properties of blood, which can be imaged by fMRI due to a hemodynamic effect (changes in blood flow and blood volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397

    PubMed  CAS  Google Scholar 

  • Bandettini PA, Jesmanovicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30:161–173

    PubMed  CAS  Google Scholar 

  • Baudendistel K, Schad LR, Friedlinger M, Wenz F, Schröder J, Lorenz WJ (1995) Postprocessing of functional MRI data of motor cortex stimulation measured with a standard 1.5T imager. Magn Reson Imaging 13(5):701–707

    PubMed  CAS  Google Scholar 

  • Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weiskoff RM, Cohen MS, Vevea JM, Brady TJ, Rosen BR (1991) Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254:716–719

    PubMed  CAS  Google Scholar 

  • Blamire AM, Ogawa S, Ugurbil K, Rothman D, McCarthy G, Ellermann JM, Hyder F, Rattner Z, Shulman RS (1992) Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. Proc Natl Acad Sci USA 89:11069–11073

    PubMed  CAS  Google Scholar 

  • Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR, Weisskoff RM (1995) The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med 34:4–10

    PubMed  CAS  Google Scholar 

  • Chen QS, Defrise M, Deconinck (1994) Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition. IEEE-PAMI 16(12):1156–1168

    Google Scholar 

  • Conelly A, Jachson GD, Frackowiak RS, Belliveau JW, Vargha-Khadem F, Gadian DG (1993) Functional mapping of activated human primary cortex with a clinical MR imaging system. Radiology 188:125–130

    Google Scholar 

  • Constable RT, McCarthy G, Allison T, Anderson AW, Gore JC (1993) Functional brain imaging at 1.5T using conventional gradient echo MR imaging techniques. Magn Reson Imaging 11:451–459

    PubMed  CAS  Google Scholar 

  • Constable RT, Kennan RP, Puce A, McCarthy G, Gore JC (1994) Functional NMR using fast spin echo at 1.5 T. Magn Reson Med 31:686–690

    PubMed  CAS  Google Scholar 

  • Edelman RR, Siewert B (1994) Signal targeting with alternating radiofrequency (STAR) se­quen­ces. Magn Reson Med 31:233

    PubMed  CAS  Google Scholar 

  • Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83:1140–1144

    PubMed  CAS  Google Scholar 

  • Frahm J, Bruhn H, Merboldt KD, Hänicke W (1992) Dynamic MR imaging of the human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging 2:501–505

    PubMed  CAS  Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ. (1991) Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab 11:690–699

    PubMed  CAS  Google Scholar 

  • Friston KF, Jezzard P, Turner R (1994) The analysis of functional MRI time series. Human Brain Mapp 1:153–171

    Google Scholar 

  • Friston KJ, Williams S, Howard R, Frackowiak RSJ, Turner R (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35:346–355

    PubMed  CAS  Google Scholar 

  • Gillis P, Koenig SH (1987) Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite. Magn Reson Med 5, 323–345

    Google Scholar 

  • Haase A, Frahm J, Matthaei D, Hänicke W, Merboldt KD (1986) FLASH imaging. Rapid NMR imaging using low flip-angle pulses. J Magn Reson 67:258–266

    CAS  Google Scholar 

  • Hajnal JV, Myers R, Oatridge A, Schwieso JE, Young IR, Bydder GM (1994) Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 31:283–291

    PubMed  CAS  Google Scholar 

  • Hennig J, Naureth A, Friedburg H (1986) RARE Imaging: a fast imaging method for clinical MR. Magn Reson Med 3, 823–833

    Google Scholar 

  • Hu X, Kim SG (1994) Reduction of signal fluctuation in functional MRI using navigator echoes. Magn Reson Med 3:495–503

    Google Scholar 

  • Jezzard P, Balaban RS (1995) Correction for geometric distortions in echo planar images from B 0 field variations. Magn Reson Med 34:65–73

    PubMed  CAS  Google Scholar 

  • Kennan RP, Zhong J, Gore JC (1994) Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med 31:9–21

    PubMed  CAS  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679

    PubMed  CAS  Google Scholar 

  • Majumdar S, Gore JC (1988) Studies of diffusion in random fields produced by variations in susceptibility. J Magn Reson 78:41–55

    Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990a) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TS, Nayak AS, Glynn P (1990b) Oxygenation-sensitive contrast in magnetic resonance imaging of rodent brain at high magnetic fields. Magn Reson Med 26:68–78

    Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping using MRI. Proc Natl Acad Sci USA 89:5951–5955

    PubMed  CAS  Google Scholar 

  • Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64:803–812

    PubMed  CAS  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge, pp 465–469

    Google Scholar 

  • Schad LR, Trost U, Knopp MV, Müller E, Lorenz WJ (1993) Motor cortex stimulation measured by magnetic resonance imaging on a standard 1.5T clinical scanner. Magn Reson Imaging 11:461–464

    PubMed  CAS  Google Scholar 

  • Schad LR, Wenz F, Knopp MV, Baudendistel K, Müller E, Lorenz WJ (1994) Functional 2D and 3D magnetic resonance imaging of motor cortex stimulation at high spatial resolution using standard 1.5T imager. Magn Reson Imaging 12:9–15

    PubMed  CAS  Google Scholar 

  • Thulborn KR, Waterton JC, Mathews PM, Radda G (1982) Oxygenation dependence of the transverse relaxation time of water in whole blood at high field. Biochem Biophys Acta 714:265–270

    PubMed  CAS  Google Scholar 

  • Turner R, Jezzard P, Wen H, Kwong KK, Le Bihan D, Zeffiro T, Balaban RS (1993). Functional mapping of the human visual cortex at 4 and 1.5 Tesla using deoxygenation contrast EPI. Magn Reson Med 29:277–279

    PubMed  CAS  Google Scholar 

  • Wenz F, Schad LR, Knopp MV, Baudendistel KT, Flömer F, Schröder J, van Kaick G (1994) Functional magnetic resonance imaging at 1.5T: activation pattern in schizophrenic patients receiving neuroleptic medication. Magn Reson Imaging 12:975–982

    PubMed  CAS  Google Scholar 

  • Woods RP, Cherry SR, Mazziotta JC (1992) Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 1992:620–633

    Google Scholar 

  • Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32: 749–763

    PubMed  CAS  Google Scholar 

  • Abou-Khalil B, Schlaggar B (2002) Is it time to replace the Wada test? Neurology 59:160–161

    PubMed  Google Scholar 

  • Adcock J, Wise R, Oxbury J, Oxbury S and Mattews P (2003) Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. Neuroimage 16:954–967

    Google Scholar 

  • Alkadhi H, Kollias SS, Crelier G et al (2000) Plasticity of the human motor cortex in patients with arteriovenous malformations: a functional MR imaging study. AJNR Am J Neuroradiol 21:1423–1433

    PubMed  CAS  Google Scholar 

  • Ammirati M, Vick N, Liao Y et al (1987) Effect of the extent of surgical resection on survival and quality of life in patients with supratentorial glioblastomas and anaplastic astrocytomas. Neurosurgery 21:201–206

    PubMed  CAS  Google Scholar 

  • Amunits K, Schleicher A, Burgel U, Mohlberg H, Uylings H, Zilles K (1999) Broca’s region revisited: cytoarchitectonic and intersubject variability. J Comp Neurol 412:319–341

    Google Scholar 

  • Baciu M, Le Bas J, Segebarth C, Benabid A (2003) Presurgical fMRI evaluation of cerebral reorganization and motor deficit in patients with tumors and vascular malformations. Eur J Radiol 46:139–146

    PubMed  CAS  Google Scholar 

  • Beisteiner R, Lanzenberger R, Novak K, Edward V, Windischberger C, Erdler M et al (2000) Improvement of presurgical patient evaluation by generation of functional magnetic resonance risk maps. Neurosci Lett 290:13–16

    PubMed  CAS  Google Scholar 

  • Bookheimer S, Zeffiro T, Blaxton T, Gaillard P, Theodore W (2000) Activation of language cortex with automatic speech tasks. Neurology 55:1151–1157

    PubMed  CAS  Google Scholar 

  • Burton H, Snyder A and Raichle M (2004) Default brain functionality in blind people. Proc Natl Acad Sci USA 101:15500–15505

    PubMed  CAS  Google Scholar 

  • Calautti C, Baron J (2003) Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 34:1553–1566

    PubMed  Google Scholar 

  • Cao Y, Vikingstad E, George K, Johnson A, Welch K (1999) Cortical language activation in stroke patients recovering from aphasia with functional MRI Stroke 30:2331–2340

    Google Scholar 

  • Cao Y, D’Olhaberriague L, Vikingstad E, Levine S, Welch K (1998) Pilot study of functional MRI to assess cerbral activation of motor function after poststroke hemiparesis. Stroke 29:112–122

    PubMed  CAS  Google Scholar 

  • Chee M, O’Craven K, Bergida R, Rosen B, Savoy R (1999) Auditory and visual word processing studied with fMRI. Human Brain Mapp 7:15–28

    CAS  Google Scholar 

  • Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29(3):162–173

    PubMed  CAS  Google Scholar 

  • Cramer SC (2004) Functional imaging in stroke recovery. Stroke 35:2695–2698

    PubMed  Google Scholar 

  • Cramer S, Moore C, Finklestein S, Rosen B (2000) A pilot study of somatotopic mapping after cortical infarct. Stroke 31:668–671

    PubMed  CAS  Google Scholar 

  • Crosson B, Moore A, gopinath K, White K, Wierenga C, Gaiefsky, Fabrizio K, Peck K, Soltysik D, Milsted C, Briggs R, Conway T, Rothi L (2005) Role of the right and left hemispheres in recovery of function during treatment of intention in aphasia. J Cognitive Neuroscience 17:391–406

    Google Scholar 

  • Edward V, Windischberger C, Cunnington R, Erdler M, Mayer D, Endl W, Beisteiner R (2000) Quantification of fMRI artifacte reduction by a novel plaster cast head holder. Human Brain Mapp 11:207–13

    CAS  Google Scholar 

  • Feydy A, Carlier R, Roby-Brami A, Bussel B, Cazalis F, Pierot L, Burnod Y, Maier M (2002) Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke 33:1610–1617

    PubMed  CAS  Google Scholar 

  • Field A, Yen , Burdette J, Elster A (2000) False cerebral activation on BOLD functional MR images: Study of low-, amplitude motion weakly correlated to stimulus. AJNR Am J Neuroradiol 21:1388–1396

    PubMed  CAS  Google Scholar 

  • Frahm J, Merboldt K, Hanicke W et al (1994) Brain or vein: oxygenation or flow? On signal physiology in functional MRI of human brain activation. NMR Biomed 7:445–53

    Google Scholar 

  • Friston K, Ashburner J, Frith C, Poline J, Heather J, Frackowiak (1995) Spatial registration and normalization of images. Human Brain Mapping 3:165–189

    Google Scholar 

  • Gaillard W, Balsam L, Xu B, Grandin C, Braniecki S, Papero P et al (2002) language dominance in partial epilepsy patients identified with an fMRI reading task. Neurology 59:256–265

    PubMed  CAS  Google Scholar 

  • Golby A, Poldrack R, Brewer J, Spencer D, Desmond J, Aron A, Gabrieli J (2001) Material-specific lateralization in the medial temporal lobe and prefrontal cortex during memory encoding. Brain 124:1841–1854

    PubMed  CAS  Google Scholar 

  • Hoeller M, Krings T, Reinges M, Hans F, Gilsbach J, Thron A (2002) Movement artifacts and MR BOLD signal increase during different paradigms for mapping the sensorimotor cortex. Acta Neurochir 144:279–284

    CAS  Google Scholar 

  • Holodny A, Schulder M, Liu W, Wolko J, Maldjian J, Kalnin A (2000) The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: Implications for image-guide neurosurgery. AJNR Am J Neuroradiol 21:1415–1422

    PubMed  CAS  Google Scholar 

  • Holodny A, Schulder M, Ybasco A et al (2002) Translocation of Broca’s area to the contralateral hemisphere due to a growth of a left inferior frontal glioma. J Comput Assist Tomogr 26:941–943

    PubMed  Google Scholar 

  • Huang J, Carr T, Cao Y (2001) Comparing cortical activations for silent and overt speech using event-related fMRI. Human Brain Mapp 15:39–53

    Google Scholar 

  • Jiang A, Kennedy D, Baker J et al (1995) Motion detection and correction in functional MR imaging. Human Brain Mapp 3:224–235

    Google Scholar 

  • Johansen-Berg H, Dawes H, Guy C, Smith S, Wade D, Mattews P (2002) Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain 125:2731–2742

    PubMed  Google Scholar 

  • Kim M, Holodny A, Hou B, Peck K, Chaya M, Gutin P (2005) The effect of prior surgery on BOLD fMRI in the pre-operative assessment of brain tumors. AJNR Am J Neuroradiol 26:1980–1985

    PubMed  Google Scholar 

  • Kober H, Nimsky C, Möller M, Hastreiter P, Fahlbusch R, Ganslandt O (2001) Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis. Neuroimage 14:1214–1228

    PubMed  CAS  Google Scholar 

  • Krings T, Reinges M, Erberich S, Kemeny S, Rohde V, Spetzger U, Korinth M, Willmes K, Gilsbach J, Thron A (2001) Functional MRI for presurgical planning: problems, artifacts, and solution strategies. J Neurol Neurosurg Psychiatr 70:749–760

    PubMed  CAS  Google Scholar 

  • Lazar R, Marshall R, Pile-Spellman J et al (2000) Interhemispheric transfer of language in patients with left frontal cerebral arteriovenous malformation. Neuropsychologia 38:1325–1332

    PubMed  CAS  Google Scholar 

  • Lee A, Glover G, Meyer C (1995) Discrimination of large venous vessels in time course spiral blood oxygen level dependent magnetic resonance functional neuro. Magn Reson Med 33:745–754

    PubMed  CAS  Google Scholar 

  • Liu W, Schulder M, Narra V, Kalnin A, Cathcart C, Jacobs A, Lange G, Holodny A (2000) Functional magnetic resonance imaging aided radiation treatment planning. Med Phys 27:1563–1572

    PubMed  CAS  Google Scholar 

  • Machulda M, Ward H, Borowski B et al (2003) Comparison of memory fMRI response among normal, MCI and Alzheimer’s patients. Neurology 61:500–506

    PubMed  CAS  Google Scholar 

  • Maldjian J, Schulder M, Liu W et al (1997) Intraoperative functional MRI using a real-time neurosurgical navigation system. J Comp Assist Tomogr 21:910–912

    CAS  Google Scholar 

  • Marquart M, Birn R, Haughton V (2000) Multiple-event paradigms for identification of motor cortex activation. AJNR Am J Neuroradiol 21:94–98

    PubMed  CAS  Google Scholar 

  • Marshall R, Perera G, Lazar R, Krakauer J, Constantine R, DeLaPaz R (2000) Evolution of cortical activation during recovery from corticospinal tract infraction. Stroke 31:656–661

    PubMed  CAS  Google Scholar 

  • Moriyama T, Yamanouchi N, Kodama K (1998) Activation of non-primary motor areas during a complex finger movement task revealed by functional magnetic resonance imaging. Psychiatr Clin Neurosci 52:339–343

    CAS  Google Scholar 

  • Peck K, Sunderland A, Peters A, Butterworth S, Clark P, Gowland PA (2001) Cerebral activation during a simple force production task: changes in the time course of the haemodynamic response. Neuroreport 12:2813–2816

    PubMed  CAS  Google Scholar 

  • Peck K, Moore A, Crosson B. Gaiefsky M, Gopinath K, White K, Briggs R (2004) Pre and post fMRI of an aphasia therapy: shifts in hemodynamic time to peak during overt language task. Stroke 35:554–559

    PubMed  Google Scholar 

  • Petrovich N, HolodnyA, Brennan C et al (2004) Isolated translocation of Wernicke’s area to the right hemisphere in a 62 year man with a temporo-parietal glioma. AJNR Am J Neuroradiol 25:130–133

    PubMed  Google Scholar 

  • Pineiro R, Pendlebury S, Johansen-Berg H, Mattews P (2001) Functional MRI detects posterior shifts in primary sensorimotor cortex activation after stroke: evidence of local adaptive reorganization?. Stroke 32:1134–1139

    PubMed  CAS  Google Scholar 

  • Preibisch C, Pilatus U, Lanfermann H (2003) Functional MRI using sensitivity-encoded echo planar imaging (SENSE_EPI). Neuroimage 19:412–421

    PubMed  Google Scholar 

  • Price C, Crinion J (2005) The latest on functional imaging studies of aphasic stroke. Curr Opin Neurol 18:429–434

    PubMed  Google Scholar 

  • Pronin I, Holodny A, Kornienko V et al (1997) The use of hyperventilation in contrast-enhanced MR of brain tumors. AJNR Am J Neuroradiol 18:1705–1708

    PubMed  CAS  Google Scholar 

  • Rao SM, Binder JR, Hammeke TA (1995) Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging. Neurology 45:919–924

    PubMed  CAS  Google Scholar 

  • Reings M, Krings T, Rohde V, Hans F, Willmes K, Thron A, Gilsbach J (2005) Prospective demonstration of short motor plasticity following acquired central pareses. Neuroimage 15:1248–1255

    Google Scholar 

  • Rihs F, Sturzenegger M, Gutbrod K, Schroth G, Mattle H, Determination of language dominance: Wada test confirms functional transcranial Doppler sonography, Neurology, 1999, 52:1591–1596

    Google Scholar 

  • Rijntjes M, Weiller C (2002) Recovery of motor and language abilities after stroke: the contribution of functional imaging. Prog Neurobiol 66:109–122

    PubMed  Google Scholar 

  • Rossini P, Caltagirone C, Castriota-Scandlerbeg A, Cicinelli P, DelGratta C, Demartin M, Pizzella V, Traversa R, Romani G (1998) Hand motor cortical reorganization in stroke: a study with fMRI, MEG and TCS maps. Neuroreport 9:2141–2146

    PubMed  CAS  Google Scholar 

  • Sabbah P, Chassoux F, Leveque C, Landre E, Baudoin-Chial S, Devaux B et al (2003) Functional MR imaging in assessment of language dominance in epileptic patients. Neuroimage 18:460–467

    PubMed  CAS  Google Scholar 

  • Schulder M, Maldjian J, Liu W et al (1998) Functional image guided surgery of intracranial tumors located in or near the sensorimotor cortex. J Neurosurgery 89:412–418

    CAS  Google Scholar 

  • Springer J, Binder J, Thomas H, Swanson S, Frost J, Bellgowan P, Brewer C, Perry H, Morris G,, Mueller W (1999) Language dominance in neurologically normal and epilepsy subjects: a functional MRI study. Brain 122:2033–2045

    PubMed  Google Scholar 

  • Stark C, Squire L (2001) When zero is not zero: the problem of ambiguus baseline conditions in fMRI. Proc Natl Acad Sci USA 98:12760–12766

    PubMed  CAS  Google Scholar 

  • Staudt M, Lidzba K, Grodd W, Wildgruber D, Erb Mabd Kragelohmann I (2002) Right-hemispheric organization of language following early leftsided brain lesion functional MRI topography. Neuroimage 16:954–967

    PubMed  Google Scholar 

  • Thickbroom G, Byrnes M, Archer S, Nagarajan L, Mastaglia F (2001) Differences in sensory and motor cortical organization following brain injury early in life. Ann Neurol 49:320–327

    PubMed  CAS  Google Scholar 

  • Thulborn K, Carpenter P, Just M (1999) Plasticity of language-related brain function during recovery from stroke. Stroke 30:749–754

    PubMed  CAS  Google Scholar 

  • Ulmer J, Krouwer H, Mueller W, Ugurel M, Kocak M, Mark L (2003) Pseudo-reorganization of language cortical function at fMR imaging: a consequence of tumor-induced neovascular uncoupling. AJNR Am J Neuroradiol 24:213–217

    PubMed  Google Scholar 

  • Van Oostende S, Van Hecke P, Sunaert S, Nuttin B, Marchal G (1997) fMRI studies of the supplementary motor area and the premotor cortex. Neuroimage 6:181–190

    PubMed  Google Scholar 

  • Wada J (1949) A new method for determination of the side of cerebral speech dominance: a preliminary report on the intracarotid injection of sodium Amytal in man. Igaku to Seibutsugaki 14:221–222

    Google Scholar 

  • Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ (2003) Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain 126:1430–1448

    PubMed  CAS  Google Scholar 

  • Witt T, Kondziolka D, Baumann S, Noll D, Small S, Lunsford D (1996) Preoperative cortical localization with functional MRI for use in stereotactic setup. Magn Reson Imaging 14:1007–1012

    Google Scholar 

  • Woermann F, Jokeit H, Luerding R, Freitag H, Schulz R, Guertler S, Okujava M, Wolf P, Tuxhorn I, Ebner A (2003) Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology 61:699–701

    PubMed  CAS  Google Scholar 

  • Yousry TA, Schmid UD, Jassoy AG (1995) Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery. Radiology 195:23–29

    PubMed  CAS  Google Scholar 

  • Yousry TA, Schmid UD, Alkadhi H (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120:141–157

    PubMed  Google Scholar 

  • Zemke A, Heagerty P, Lee C, Cramer S (2003) Motor cortex organization after stroke is related to side of stroke and level of recovery. Stroke 34:e23–e28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schad, L., Peck, K., Holodny, A. (2008). Functional MRI. In: Reiser, M., Semmler, W., Hricak, H. (eds) Magnetic Resonance Tomography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29355-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-29355-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29354-5

  • Online ISBN: 978-3-540-29355-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics