Skip to main content

Disorders in the Transport of Copper, Zinc and Magnesium

  • Chapter
Inborn Metabolic Diseases
  • 2959 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brewer GJ, Yuzbasiyan-Gurkan V (1992) Wilson disease. Medicine 71:139–164

    PubMed  CAS  Google Scholar 

  2. Houwen RHJ, van Hattum J, Hoogenraad TU (1993) Wilson disease. Neth J Med 43:26–37

    PubMed  CAS  Google Scholar 

  3. Strand S, Hofmann WJ, Grambihler A et al (1998) Hepatic failure and liver cell damage in acute Wilson’s disease involve CD95 (APO-1/Fas) mediated apoptosis. Nat Med 4:588–593

    Article  PubMed  CAS  Google Scholar 

  4. Bull PC, Thomas GR, Rommens JM et al (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5:327–337

    Article  PubMed  CAS  Google Scholar 

  5. Tanzi RE, Petrukhin K, Chernov I, et al (1993) The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 5:344–350

    Article  PubMed  CAS  Google Scholar 

  6. Forbes JR, Cox DW (2000) Copper-dependent trafficking of Wilson disease mutant ATP7B proteins. Hum Mol Genet 9:1927–1935

    Article  PubMed  CAS  Google Scholar 

  7. Liu XQ, Zhang YF, Liu TT et al (2004) Correlation of ATP7B genotype with phenotype in Chinese patients with Wilson disease. World J Gastroenterol 10:590–593

    PubMed  CAS  Google Scholar 

  8. Stapelbroek JM, Bollen CW, Ploos van Amstel JK, et al (2004) The H1069Q mutation in ATP7B is associated with late and neurologic presenttaion in Wilson disease: results of a meta-analysis. J Hepatol 41:758–763

    Article  PubMed  CAS  Google Scholar 

  9. Ferenci P, Caca K, Loudianos G et al (2003) Diagnosis and phenotypic classification of Wilson disease. Liver International 23:139–142

    Article  PubMed  Google Scholar 

  10. Nazer H, Ede RJ, Mowat AP, Williams R (1986) Wilson’s disease: clinical presentation and use of prognostic index. Gut 27:1377–1381

    PubMed  CAS  Google Scholar 

  11. Walshe JM, Yealland M (1993) Chelation treatment of neurological Wilson’s disease. Q J Med 86:197–204

    PubMed  CAS  Google Scholar 

  12. Dahlman T, Hartvig P, Löfholm M et al (1995) Long-term treatment of Wilson’s disease with triethylene tetramine dihydrochloride (trientine). Q J Med 88:609–616

    CAS  Google Scholar 

  13. Czlonkowska A, Gajda J, Rodo M (1996) Effects of long-term treatment in Wilson’s disease with D-penicillamine and zinc sulphate. Neurol 243:269–273

    Article  CAS  Google Scholar 

  14. Brewer GJ, Hedera P, Kluin KJ et al (2003) Treatment of Wilson disease with Ammonium Tetrathiomolybdate. III. Initial therapy in a total of 55 neurologically affected patients and follow-up with zinc therapy. Arch Neurol 60:379–385

    Article  PubMed  Google Scholar 

  15. Kaler SG (1998) Diagnosis and therapy of Menkes syndrome, a genetic form of copper deficiency. Am J Clin Nutr 67:1029S–1034S

    PubMed  CAS  Google Scholar 

  16. Tsukahara M, Imaizumi K, Kawai S, Kajii T (1994) Occipital horn syndrome: report of a patient and review of the literature. Clin Genet 45:32–35

    Article  PubMed  CAS  Google Scholar 

  17. Petris MJ, Mercer JFB (1999) The Menkes protein (ATP7A;MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal. Hum Mol Genet 8:2107–2115

    Article  PubMed  CAS  Google Scholar 

  18. Kim BE, Smith K, Petris MJ (2003) A copper treatable Menkes disease mutation associated with defective trafficking of a functional Menkes copper ATPase. J Med Genet 40:290–295

    Article  PubMed  CAS  Google Scholar 

  19. Tümer Z, Møller LB, Horn N (2003) Screening of 383 unrelated patients affected with Menkes disease and finding of 57 gross deletions in ATP7A. Hum Mutat 22:457–464

    Article  PubMed  CAS  Google Scholar 

  20. Møller LB, Tümer Z, Lund C et al (2000) Similar splice-site mutations of the ATP7A gene lead to different phenotypes: classical Menkes disease or occipital horn syndrome. Am J Hum Genet 66:1211–1220

    Article  PubMed  Google Scholar 

  21. Kaler SG, Goldstein DS, Holmes C et al (1993) Plasma and cerebrospinal fluid neurochemical pattern in Menkes disease. Ann Neurol 33:171–175

    Article  PubMed  CAS  Google Scholar 

  22. Kodoma H, Sato E, Yanagawa Y et al (2003) Biochemical indicator for evaluation of connective tissue abnormalities in Menkes’ disease. J Pediatr 142:726–728

    Article  CAS  Google Scholar 

  23. Tümer Z, Horn N (1998) Menkes disease: Underlying genetic defect and new diagnostic possibilities. J Inherit Metab Dis 21:604–612

    Article  PubMed  Google Scholar 

  24. Christodoulou J, Danks DM, Sarkar B et al (1998) Early treatment of Menkes disease with parenteral cooper-histidine: long-term follow-up of four treated patients. Am J Med Genet 76:154–164

    Article  PubMed  CAS  Google Scholar 

  25. Tanner MS (1998) Role of copper in Indian childhood cirrhosis. Am J Clin Nutr 67:1074S–1081S

    PubMed  CAS  Google Scholar 

  26. Müller T, Feichtinger H, Berger H, Müller W (1996) Endemic Tyrolean infantile cirrhosis: an ecogenetic disorder. Lancet 347:877–880

    Article  PubMed  Google Scholar 

  27. Müller T, van de Sluis B, Zhernakova A et al (2003) The canine copper toxicosis gene MURR1 does not cause non-Wilsonian hepatic copper toxicosis. J Hepatol 38:164–168

    Article  PubMed  CAS  Google Scholar 

  28. Aggett PJ (1983) Acrodermatitis enteropathica. J Inherit Metab Dis 6:39S–43S

    Article  Google Scholar 

  29. Van Wouwe JP (1989) Clinical and laboratory diagnosis of acrodermatitis enteropathica. Eur J Pediatr 149:2–8

    Article  PubMed  Google Scholar 

  30. Lombeck I, Schnippering HG, Ritzl F et al (1975) Absorption of zinc in acrodermatitis enteropathica. Lancet i:855

    Article  Google Scholar 

  31. Atherton DJ, Muller DPR, Aggett PJ, Harries JT (1979) A defect in zinc uptake by jejunal biopsies in acrodermatitis enteropathica. Clin Sci 56:505–507

    PubMed  CAS  Google Scholar 

  32. Küry S, Dréno B, Bézieau S et al (2002) Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet 31:239–240

    Article  PubMed  CAS  Google Scholar 

  33. Wang K, Zhou B, Kuo YM et al (2002) A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet 71:66–73

    Article  PubMed  CAS  Google Scholar 

  34. Küry S, Kharfi M, Kamoun R et al (2003) Mutation spectrum of human SLC39A4 in a panel of patients with Acrodermatitis Enteropathica. Hum Mutat 22:337–338

    Article  PubMed  CAS  Google Scholar 

  35. Antilla PH, Von Willebrand E, Simell O (1986) Abnormal immune responses during hypozincaemia in acrodermatitis enteropathica. Acta Paediatr Scand 75:988–992

    Google Scholar 

  36. Neldner KH, Hambidge KM (1975) Zinc therapy of acrodermatitis enteropathica. N Engl J Med 292:879–882

    Article  PubMed  CAS  Google Scholar 

  37. Stevens J, Lubitz L (1998) Symptomatic zinc deficiency in breast-fed term and premature infants. J Paed Child Health 34:97–100

    Article  CAS  Google Scholar 

  38. Sharma NL, Sharma RC, Gupta KR, Sharma RP (1988) Self-limiting acrodermatitis enteropathica. A follow-up study of three interrelated families. Int J Dermatol 27:485–486

    PubMed  CAS  Google Scholar 

  39. Sampsom B, Fagerhol MK, Sunderkötter C et al (2002) Hyperzincaemia and hypercalprotectinaemia: a new disorder of zinc metabolism. Lancet 360:1742–1745

    Article  Google Scholar 

  40. Smith JC, Zeller JA, Brown ED, Ong SC (1976) Elevated plasma zinc: a heritable anomaly. Science 193:496–498

    PubMed  CAS  Google Scholar 

  41. Dudin KI, Teebi AS (1987) Primary hypomagnesaemia. A case report and literature review. Eur J Pediatr 146:303–305

    Article  PubMed  CAS  Google Scholar 

  42. Shalev H, Phillip M, Galil A et al (1998) Clinical presentation and outcome in primary familial hypomagnesaemia. Arch Dis Child 78:127–130

    Article  PubMed  CAS  Google Scholar 

  43. Milla PJ, Aggett PJ, Wolff OH, Harries JT (1979) Studies in primary hypomagnesaemia: evidence for defective carrier-mediated small intestinal transport of magnesium. Gut 20:1028–1033

    PubMed  CAS  Google Scholar 

  44. Walder RY, Landau D, Meyer P et al (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 31:171–174

    Article  PubMed  CAS  Google Scholar 

  45. Chubanov V, Waldegger S, Schnitzler MM et al (2004) Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci USA 101:2894–2899

    Article  PubMed  CAS  Google Scholar 

  46. Schlingmann KP, Weber S, Peters M et al (2002). Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM family. Nat Genet 31:166–170

    Article  PubMed  CAS  Google Scholar 

  47. Benigno V, Canonica CS, Bettinelli A et al (2000) Hypomagnesaemia-hypercalciuria-nephrocalcinosis: a report of nine cases and a review. Nephrol Dial Transplan 15:605–610

    Article  CAS  Google Scholar 

  48. Weber S, Schneider L, Peters M et al (2001) Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 12:1872–1881

    PubMed  CAS  Google Scholar 

  49. Simon DB, Lu Y, Choate KA et al (1999) Paracellin-1 a renal tight junction protein required for paracellular Mg2+ resorption. Science 285:103–106

    Article  PubMed  CAS  Google Scholar 

  50. Geven WB, Monnens LA, Willems HL et al (1987) Renal magnesium wasting in two families with autosomal dominant inheritance. Kidney Int 31:1140–1144

    PubMed  CAS  Google Scholar 

  51. Meij IC, Koenderink JB, van Bokhoven H et al (2000) Dominant isolated renal magnesium loss is caused by misrouting of the Na+K+-ATP-ase γ-subunit. Nat Genet 26:265–266

    Article  PubMed  CAS  Google Scholar 

  52. Kantorovich V, Adams JS, Gaines JE et al (2002) Genetic heterogeneity in familial renal magnesium wasting. J Clin Endocrinol Metab 87:612–617

    Article  PubMed  CAS  Google Scholar 

  53. Geven WB, Monnens LAH, Willems JL et al (1987) Isolated autosomal recessive renal magnesium loss in two sisters. Clin Genet 32:398–402

    Article  PubMed  CAS  Google Scholar 

  54. Miyajima H, Nishimura Y, Mizoguchi K et al (1987) Familial apoceruloplasmin deficiency associated with blepharospasm and retinal degeneration. Neurology 37:761–767

    PubMed  CAS  Google Scholar 

  55. Kono S, Miyajima H (2006) Molecular and pathological basis of aceruloplasminemia. Biol Res 39:15–23

    Article  PubMed  CAS  Google Scholar 

  56. Miyajima H, Takahashi Y, Kamata T et al (1997) Use of desferrioxamine in the treatment of aceruloplasminemia. Ann Neurol 41:404–407

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Houwen, R.H.J. (2006). Disorders in the Transport of Copper, Zinc and Magnesium. In: Fernandes, J., Saudubray, JM., van den Berghe, G., Walter, J.H. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-28785-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28785-8_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28783-4

  • Online ISBN: 978-3-540-28785-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics