Skip to main content

Biotin-Responsive Disorders

  • Chapter
Inborn Metabolic Diseases

Abstract

Two inherited defects in biotin metabolism are known: holocarboxylase synthetase (HCS) deficiency and biotinidase deficiency. Both lead to deficiency of all biotindependent carboxylases, i.e. to multiple carboxylase deficiency (MCD). In HCS deficiency, the binding of biotin to apocarboxylases is impaired. In biotinidase deficiency, biotin depletion ensues from the inability to recycle endogenous biotin and to utilize protein-bound biotin from the diet. As the carboxylases play an essential role in the catabolism of several amino acids, in gluconeogenesis and in fatty-acid synthesis, their deficiency provokes multiple, life-threatening metabolic derangements, eliciting characteristic organic aciduria and neurological symptoms. The clinical presentation is extremely variable in both disorders. Characteristic symptoms include metabolic acidosis, hypotonia, seizures, ataxia, impaired consciousness and cutaneous symptoms, such as skin rash and alopecia. All patients with biotinidase and a majority of patients with HCS deficiency respond dramatically to oral therapy with pharmacological doses of biotin. Delayed diagnosis and treatment in biotinidase deficiency may result in irreversible neurological damage. A few patients with HCS deficiency show a partial or even no response to biotin and seem to have an impaired long-term outcome. Acquired biotin deficiency, which also causes MCD, is extremely rare. A defect in biotin transport has been reported in a single child; however the genetic defect remains unresolved to date. Biotin-Responsive Basal Ganglia Disease (BRBGD) is a recently described subacute encephalopathy which disappears within a few days without neurological sequelae if biotin is administered early.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumgartner ER, Suormala T (1997) Multiple carboxylase deficiency: inherited and acquired disorders of biotin metabolism. Int J Vit Nutr Res 67:377–384

    CAS  Google Scholar 

  2. Sakamoto O, Suzuki Y, Li X et al (2000) Diagnosis and molecular analysis of an atypical case of holocarboxylase synthetase deficiency. Eur J Pediatr 159:18–22

    Article  PubMed  CAS  Google Scholar 

  3. Suormala T, Fowler B, Duran M et al (1997) Five patients with a biotin-responsive defect in holocarboxylase formation: evaluation of responsiveness to biotin therapy in vivo and comparative studies in vitro. Pediatr Res 41:666–673

    PubMed  CAS  Google Scholar 

  4. Sherwood WG, Saunders M, Robinson BH et al (1982) Lactic acidosis in biotin-responsive multiple carboxylase deficiency caused by holocarboxylase synthetase deficiency of early and late onset. J Pediatr 101:546–550

    Article  PubMed  CAS  Google Scholar 

  5. Suormala T, Fowler B, Jakobs C et al (1998) Late-onset holocarboxylase synthetase-deficiency: pre-and post-natal diagnosis and evaluation of effectiveness of antenatal biotin therapy. Eur J Pediatr 157:570–575

    Article  PubMed  CAS  Google Scholar 

  6. Seymons K, De Moor A, De Raeve H, Lambert J (2004) Dermatologic signs of biotin deficiency leading to the diagnosis of multiple carboxylase deficiency. Pediatr Dermatol 21:231–235

    Article  PubMed  Google Scholar 

  7. Baumgartner ER, Suormala TM, Wick H, Bausch J, Bonjour JP (1985) Biotinidase deficiency associated with renal loss of biocytin and biotin. Ann NY Acad Sci 447:272–286

    PubMed  CAS  Google Scholar 

  8. Baumgartner ER, Suormala TM, Wick H et al (1989) Biotinidase deficiency: a cause of subacute necrotizing encephalomyelopathy (Leigh syndrome). Report of a case with lethal outcome. Pediatr Res 26:260–266

    PubMed  CAS  Google Scholar 

  9. Wastell HJ, Bartlett K, Dale G, Shein A (1988) Biotinidase deficiency: a survey of 10 cases. Arch Dis Child 63:1244–1249

    PubMed  CAS  Google Scholar 

  10. Wolf B, Heard GS, Weissbecker KA et al (1985) Biotinidase deficiency: initial clinical features and rapid diagnosis. Ann Neurol 18:614–617

    Article  PubMed  CAS  Google Scholar 

  11. Wolf B, Pompionio RJ, Norrgard KJ et al (1998) Delayed onset profound biotinidase deficiency. J Pediatr 132:362–365

    Article  PubMed  CAS  Google Scholar 

  12. Wolf B, Norrgard KJ, Pomponio RJ et al (1997) Profound biotinidase deficiency in two asymptomatic adults. Am J Med Genet 73:5–9

    Article  PubMed  CAS  Google Scholar 

  13. Moeslinger D, Stockler-Ipsiroglu S, Scheibenreiter S et al (2001) Clinical and neuropsychological outcome in 33 patients with biotinidase deficiency ascertained by nationwide newborn screening and family studies in Austria. Eur J Pediatr 160:277–282

    Article  Google Scholar 

  14. Suormala TM, Baumgartner ER, Wick H et al (1990) Comparison of patients with complete and partial biotinidase deficiency: biochemical studies. J Inherit Metab Dis 13:76–92

    Article  PubMed  CAS  Google Scholar 

  15. Grunewald S, Champion MP, Leonard JV, Schaper J, Morris AA (2004) Biotinidase deficiency: a treatable leukoencephalopathy. Neuropediatrics 35:211–216

    Article  PubMed  CAS  Google Scholar 

  16. Ramaekers VTH, Suormala TM, Brab M et al (1992) A biotinidase Km variant causing late onset bilateral optic neuropathy. Arch Dis Child 67:115–119

    Article  PubMed  CAS  Google Scholar 

  17. Weber P, Scholl S, Baumgartner ER (2004) Outcome in patients with profound biotinidase deficiency: relevance of newborn screening. Dev Med Child Neurol 46:481–484

    Article  PubMed  Google Scholar 

  18. Wolf B, Spencer R, Gleason T (2002) Hearing loss is a common feature of symptomatic children with profound biotinidase deficiency. J Pediatr 140:242–246

    Article  PubMed  Google Scholar 

  19. Duran M, Baumgartner ER, Suormala TM et al (1993) Cerebrospinal fluid organic acids in biotinidase deficiency. J Inherit Metab Dis 16:513–516

    Article  PubMed  CAS  Google Scholar 

  20. Ozand PT, Gascon GG, Al Essa M et al (1998) Biotin-responsive basal ganglia disease: a novel entity. Brain 121:1267–1279

    Article  PubMed  Google Scholar 

  21. Aoki Y, Suzuki Y, Li X et al (1997) Characterization of mutant holocarboxylase synthetase (HCS): a Km for biotin was not elevated in a patient with HCS deficiency. Pediatr Res 42:849–854

    PubMed  CAS  Google Scholar 

  22. Burri BJ, Sweetman L, Nyhan WL (1985) Heterogeneity in holocarboxylase synthetase in patients with biotin-responsive multiple carboxylase deficiency. Am J Hum Genet 37: 326–337

    PubMed  CAS  Google Scholar 

  23. Sakamoto O, Suzuki Y, Li X et al (1999) Relationship between kinetic properties of mutant enzyme and biochemical and clinical responsiveness to biotin in holocarboxylase synthetase deficiency. Pediatr Res 46:671–676

    PubMed  CAS  Google Scholar 

  24. Suormala TM, Baumgartner ER, Bausch J et al (1988) Quantitative determination of biocytin in urine of patients with biotinidase deficiency using high-performance liquid chromatography (HPLC). Clin Chim Acta 177:253–270

    Article  PubMed  CAS  Google Scholar 

  25. Blom W, de Muinck Keizer SM, Scholte HR (1981) Acetyl-CoA carboxylase deficiency: An inborn error of de novo fatty acid synthesis. N Engl J Med 305:465–466

    Article  PubMed  CAS  Google Scholar 

  26. Baumgartner MR, Dantas MF, Suormala T et al (2004) Isolated 3-methylcrotonyl-CoA carboxylase deficiency: Evidence for an allele-specific dominant negative effect and responsivness to biotin therapy. Am J Hum Genet 75:790–800

    Article  PubMed  CAS  Google Scholar 

  27. Zeng WQ, Al-Yamani E, Acierno JS Jr et al (2005) Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Am J Hum Genet 77:16–26

    Article  PubMed  CAS  Google Scholar 

  28. Mardach R, Zempleni J, Wolf B et al (2002) Biotin dependency due to a defect in biotin transport. J Clin Invest 109:1617–1623

    Article  PubMed  CAS  Google Scholar 

  29. Wolf B (1991) Worldwide survey of neonatal screening for biotinidase deficiency. J Inherit Metab Dis 14:923–92725

    Article  PubMed  CAS  Google Scholar 

  30. Leon-Del-Rio A, Leclerc D, Akerman B, Wakamatsu N, Gravel RA (1995) Isolation of cDNA encoding human holocarboxylase synthetase by functional complementation of a biotin auxotroph of Escherichia coli. Proc Natl Acad Sci USA 92:4626–4630

    Article  PubMed  CAS  Google Scholar 

  31. Suzuki Y, Aoki Y, Ishida Y et al (1994) Isolation and characterization of mutations in the human holocarboxylase synthetase cDNA. Nat Genet 8:122–128

    Article  PubMed  CAS  Google Scholar 

  32. Cole H, Reynolds TR, Lockyer JM et al (1994) Human serum biotinidase. cDNA cloning, sequence, and characterization. J Biol Chem 269:6566–6570

    PubMed  CAS  Google Scholar 

  33. Cole H, Weremovicz S, Morton CC, Wolf B (1994) Localization of serum biotinidase (BTD) to human chromosome 3 in Band p25. Genomics 22:662–663

    Article  PubMed  CAS  Google Scholar 

  34. Morrone A, Malvaglia S, Donati MA et al (2002) Clinical findings and biochemical and molecular analysis of four patients with holo carboxylase synthetase deficiency. Am J Med Genet 111:10–18

    Article  PubMed  CAS  Google Scholar 

  35. Tang NLS, Hui J, Yong CKK et al (2003) A genomic approach to mutation analysis of holocarboxylase synthetase gene in three Chinese patients with late-onset holocarboxylase synthetase deficiency. Clin Biochem 36:145–149

    Article  PubMed  CAS  Google Scholar 

  36. Yang X, Aoki Y, Li X et al (2001) Structure of human holocarboxylase synthetase gene and mutation spectrum of holocarboxylase synthetase deficiency. Hum Genet 109:526–534

    Article  PubMed  CAS  Google Scholar 

  37. The human gene mutation database. http://archive.uwcm.ac.uk/uwcm/mg/hgmd0.html

    Google Scholar 

  38. Dupuis L, Campeau E, Leclerc D, Gravel RA (1999) Mecanisms of biotin responsiveness in biotin-responsive multiple carboxylase deficiency. Mol Genet Metab 66:80–90

    Article  PubMed  CAS  Google Scholar 

  39. Soloranza-Vargas RS, Pacheco-Alvarez D, Leon-del-Rio A (2002) Holocarboxylase synthetase is an obligate participant in biotin-mediated regulation of its own expression and of biotin-dependent carboxylases mRNA levels in human cells. PNAS 99:5325–5330

    Article  CAS  Google Scholar 

  40. Hymes J, Stanley CM, Wolf B (2001) Mutations in BTD causing biotinidase deficiency. Hum Mutat 18:375–381

    Article  PubMed  CAS  Google Scholar 

  41. Wolf B (2003) Biotinidase deficiency: new directions and practical concerns. Curr Treat Options Neurol 5:321–328

    PubMed  Google Scholar 

  42. Pomponio RJ, Hymes J, Reynolds TR et al (1997) Mutation in the human biotinidase gene that causes profound biotinidase deficiency in symptomatic children: molecular, biochemical, and clinical analysis. Pediatr Res 42:840–848

    PubMed  CAS  Google Scholar 

  43. Hymes J, Fleischhauer K, Wolf B (1995) Biotinylation of histones by human serum biotinidase: assessment of biotinyl-transferase activity in sera from normal individuals and children with biotinidase deficiency. Biochem Mol Med 56:76–83

    Article  PubMed  CAS  Google Scholar 

  44. Norrgard KJ, Pomponio RJ, Hymes J, Wolf B (1999) Mutations causing profound biotinidase deficiency in children ascertained by newborn screening in the United States occur at different frequencies than in symptomatic children. Pediatr Res 46:20–27

    PubMed  CAS  Google Scholar 

  45. Suzuki Y, Aoki Y, Sakamoto O et al (1996) Enzymatic diagnosis of holocarboxylase synthetase deficiency using apo-carboxyl carrier protein as a substrate. Clin Chim Acta 251:41–52

    Article  PubMed  CAS  Google Scholar 

  46. Baur B, Suormala T, Bernoulli C, Baumgartner ER (1998) Biotin determination by three different methods: specificity and application to urine and plasma ultrafiltrates of patients with and without disorders in biotin metabolism. Int J Vit Nutr Res 68:300–308

    CAS  Google Scholar 

  47. Aoki Y, Suzuki Y, Sakamoto O et al (1995) Molecular analysis of holocarboxylase synthetase deficiency: a missense mutation and a single base deletion are predominant in Japanese patients. Biochim Biophys Acta 1272:168–174

    PubMed  Google Scholar 

  48. Santer R, Muhle H, Suormala T et al (2003) Partial response to biotin therapy in a patient with holocarboxylase synthetase deficiency: clinical, biochemical, and molecular genetic aspects. Mol Genet Metab 79:160–166

    Article  PubMed  CAS  Google Scholar 

  49. Wolf B, Hsia YE, Sweetman L et al (1981) Multiple carboxylase deficiency: clinical and biochemical improvement following neonatal biotin treatment. Pediatrics 68:113–118

    PubMed  CAS  Google Scholar 

  50. Michalski AJ, Berry GT, Segal S (1989) Holocarboxylase synthetase deficiency: 9-year follow-up of a patient on chronic biotin therapy and a review of the literature. J Inherit Metab Dis 12:312–316

    Article  PubMed  CAS  Google Scholar 

  51. Suormala T, Ramaekers VTH, Schweitzer S et al (1995) Biotinidase Km-variants: detection and detailed biochemical investigations. J Inherit Metab Dis 18:689–700

    Article  PubMed  CAS  Google Scholar 

  52. Secor McVoy JR, Levy HL, Lawler M et al (1990) Partial biotinidase deficiency: clinical and biochemical features. J Pediatr 116:78–83

    Article  Google Scholar 

  53. Bernoulli C, Suormala T, Baur B, Baumgartner ER (1998) A sensitive method for the determination of biotin in plasma and CSF, and application to partial biotinidase deficiency. J Inherit Metab Dis 21[Suppl 2]46:92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Baumgartner, M.R., Suormala, T. (2006). Biotin-Responsive Disorders. In: Fernandes, J., Saudubray, JM., van den Berghe, G., Walter, J.H. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-28785-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28785-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28783-4

  • Online ISBN: 978-3-540-28785-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics