Advertisement

Task Oriented Functional Self-organization of Mobile Agents Team: Memory Optimization Based on Correlation Feature

  • Sorinel Adrian Oprisan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3172)

Abstract

We developed a new optimization algorithm for multiagent coordination based on indirect and unsupervised communication. The mobile agents team task is simply searching and collecting “food items”. The global coherent behavior is emergent, meaning that despite the fact that agents have no global map of the environment and do not directly communicate with each other they coordinate their behavior to achieve a global “goal”. The coordinated response of the agents is the result of indirect communication via local changes in the environment. Each agent records the encountered objects in a memory register and by appropriate weighting of local perception the agent tries to estimate the global spatial distributions of the objects in the environment. The range of spatial and temporal indirect coupling among the agents is controlled via a “memory radius”. We developed an optimized an algorithm that adapts the “memory radius” according to environment changes to minimize the computational time required to achieve the “goal” (piling the objects of the same kind together). Our optimization procedure is based on the correlation feature of the emergent pattern. The maximum speed of feature decreases leads to an optimized dependence of the “memory radius” on simulation time step. We derived also an analytic relationship between the “memory radius” and the time step based on the intermediate steady-state assumption. Numerical simulations confirmed that our analytic relationship coincides with the numerical optimization criterion based on the correlation feature.

Keywords

Cellular Automaton Mobile Agent Cellular Automaton Object Type Maximum Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amarie, D., Oprisan, S.A., Ignat, M.: Phys. Lett. A 254, 112 (1999)CrossRefGoogle Scholar
  2. 2.
    Blacher, S., Brouers, F., van Dyck, R.: Physics A 197, 516 (1993)CrossRefGoogle Scholar
  3. 3.
    Blacher, S., Brouers, F., Fayt, R., Teyssie, P.: J. of Polymer Science: Part B: Polymer Physics 31, 655 (1993)CrossRefGoogle Scholar
  4. 4.
    Boccara, N., Goles, E., Martinez, S., Picco, P. (eds.): Cellular Automata and Cooperative Systems. Kluwer Academic, Dordrecht (1993)zbMATHGoogle Scholar
  5. 5.
    von Neumann, J.: Essays on Cellular Automata, edited by A. Burks. Univ. of Illinois Press (1970)Google Scholar
  6. 6.
    Deneubourg, J.L., Pasteels, J.M., Verhaeghe, J.C.: J. Theor. Biol. 105, 259 (1983)CrossRefGoogle Scholar
  7. 7.
    Deneubourg, J.L., Fresneau, D., Goss, S., Lachaud, J.-P., Pasteels, I.M.: Experientia Supplementum 54, 177 (1987)Google Scholar
  8. 8.
    Deneubourg, J.L., Goss, S.: Ethology, Ecology and Evolution 1, 295 (1989)CrossRefGoogle Scholar
  9. 9.
    Deneubourg, J.L., Gross, S., Sandini, G., Ferrari, F., Dario, P.: Proc. Japan - USA Symposium on Flexible Automaton (1990)Google Scholar
  10. 10.
    Deneubourg, J.L., Gross, S., Franks, N., Sandova-Franks, A., Detrian, C., Chretien, L.: In: Proc. 1st Int. Conf Simulation of Adaptive behavior, p. 356. MIT Press, Cambridge (1991)Google Scholar
  11. 11.
    Deneubourg, J.L.: Insectes Sociaux 24, 117 (1977)CrossRefGoogle Scholar
  12. 12.
    Frisch, U., Hasslacher, B., Pomeau, Y.: Phys. Rev. Lett. 56, 1505 (1986)CrossRefGoogle Scholar
  13. 13.
    Giuraniuc, C.V., Oprisan, S.A.: Phys. Lett. A 259, 334 (1999)CrossRefGoogle Scholar
  14. 14.
    Haralick, R., Shanmugan, K., Distein, I.: IEEE Trans. System Man and Cybern 3, 610 (1973)CrossRefGoogle Scholar
  15. 15.
    Neumann von, J.: Theory of Self-Reproducing Automata, edited by A.W. Burks. Univ. of Illinois Press, Urbana (1966)Google Scholar
  16. 16.
    Oprisan, S.A., Holban, V., Moldoveanu, B.: Phys. Lett. A 216, 303 (1996)CrossRefGoogle Scholar
  17. 17.
    Oprisan, S.: J. Phys. A: Math & Gen. 31, 8451 (1998)zbMATHCrossRefGoogle Scholar
  18. 18.
    Oprisan, S.A., Ardelean, A., Frangopol, P.T.: Bioinformatics 60, 1 (2000)Google Scholar
  19. 19.
    Perdang, J.M., Lejeune, A.: Cellular Automata. World Scientific, Singapore (1993)Google Scholar
  20. 20.
    Rodin, E.Y., Amin, S.M.: Proc. Intelligent Symposium on intelligent control, Arlington, VA, p. 366 (1989)Google Scholar
  21. 21.
    Toffoli, T.: Physica 10 D, 117 (1984)Google Scholar
  22. 22.
    Tsallis, C., Stariolo, D.A.: Physica A 233, 395 (1996)Google Scholar
  23. 23.
    Unsal, C.: M.S. thesis, Virginia Politechniq Insitute (1993)Google Scholar
  24. 24.
    Yovits, M.C., Jacobi, G.T., Goldstein, G.D.: Self-organizing systems, McGregor and Werner, Washington (1962)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sorinel Adrian Oprisan
    • 1
  1. 1.Department of PsychologyUniversity of New OrleansNew OrleansUSA

Personalised recommendations