Advertisement

Particle Swarm Optimization Algorithm for Permutation Flowshop Sequencing Problem

  • M. Fatih Tasgetiren
  • Mehmet Sevkli
  • Yun-Chia Liang
  • Gunes Gencyilmaz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3172)

Abstract

This paper presents a particle swarm optimization algorithm (PSO) to solve the permutation flowshop sequencing problem (PFSP) with makespan criterion. Simple but very efficient local search based on the variable neighborhood search (VNS) is embedded in the PSO algorithm to solve the benchmark suites in the literature. The results are presented and compared to the best known approaches in the literature. Ultimately, a total of 195 out of 800 best-known solutions in the literature is improved by the VNS version of the PSO algorithm.

Keywords

Particle Swarm Optimization Local Search Particle Swarm Optimization Algorithm Variable Neighborhood Search Makespan Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abido, M.A.: Optimal power flow using particle swarm optimization. Electrical Power and Energy Systems 24, 563–571 (2002)CrossRefGoogle Scholar
  2. 2.
    Bean, J.C.: Genetic algorithm and random keys for sequencing and optimization. ORSA journal on computing 6(2), 154–160 (1994)zbMATHGoogle Scholar
  3. 3.
    Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39–43 (1995)Google Scholar
  4. 4.
    Framinan, J.M., Leisten, R.: An efficient constructive heuristic for flowtime minimisation in permutation flow shops. Omega 31, 311–317 (2003)CrossRefGoogle Scholar
  5. 5.
    Grabowski, J., Wodecki, M.: A very fast tabu search algorithm for the permutation flowshop problem with makespan criterion. Computers and Operations Research 31(11), 1891–1909 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hu, X., Eberhard, R.C., Shi, Y.: Swarm Intelligence for Permutation optimization: A case study of n-Queens problem. In: Proc. of the 2003 IEEE Swarm Intelligence Symposium, Indianapolis, IN, pp. 243–246 (2003)Google Scholar
  7. 7.
    Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm intelligence. Morgan Kaufmann, San Mateo (2001)Google Scholar
  8. 8.
    Mladenovic, N., Hansen, P.: Variable Neighborhood Search. Computers and Operations Research 24, 1097–1100 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Nawaz, M., Enscore Jr, E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow shop sequencing problem. Omega 11(1), 91–95 (1983)CrossRefGoogle Scholar
  10. 10.
    Onwubolu, G.C., Clerc, M.: Optimal operating path for automated drilling operations by a new heuristic approach using particle swarm optimisation. International Journal of Production Research 42(3), 473–491 (2004)zbMATHCrossRefGoogle Scholar
  11. 11.
    Nowicki, E., Smutnicki, C.: A fast tabu search algorithm for the permutation flowshop problem. European Journal of Operational Research 91, 160–175 (1996)zbMATHCrossRefGoogle Scholar
  12. 12.
    Osman, I., Potts, C.: Simulated annealing for permutation flow shop scheduling. Omega 17(6), 551–557 (1989)CrossRefGoogle Scholar
  13. 13.
    Reeves, C., Yamada, T.: Genetic algorithms, path relinking and the flowshop sequencing problem. Evolutionary Computation 6, 45–60 (1998)CrossRefGoogle Scholar
  14. 14.
    Rinnooy Kan, A.H.G.: Machine scheduling problems: Classification, complexity and computations, Nijhoff, The Hague (1976)Google Scholar
  15. 15.
    Salman, A., Ahmad, I., Al-Madani, S.: Particle swarm optimization for task assignment problem. Microprocessors and Microsystems 26, 363–371 (2003)CrossRefGoogle Scholar
  16. 16.
    Stützle, T.: Applying iterated local search to the permutation flowshop problem, Technical Report, AIDA-98-04, Darmstad University of Technology, Darmstad, Germany (1998)Google Scholar
  17. 17.
    Stützle, T.: An ant approach to the flowshop problem. In: Proc. of EUFIT 1998, pp. 1560–1564 (1998)Google Scholar
  18. 18.
    Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Operational Research 64, 278–285 (1993)zbMATHCrossRefGoogle Scholar
  19. 19.
    Tasgetiren, M.F., Sevkli, M., Liang, Y.-C., Gencyilmaz, G.: Particle swarm optimization algorithm for single machine total weighted tardiness problem. In: Proc. of the 2004 Congress on Evolutionary Computation (2004) (to appear)Google Scholar
  20. 20.
    Watson, J.P., Barbulescu, L., Whitley, L.D., Howe, A.E.: Contrasting structured and Random Permutation Flowshop Scheduling Problems: Search space Topology and Algorithm Performance. ORSA Journal of Computing 14(2), 98–123 (2002)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • M. Fatih Tasgetiren
    • 1
  • Mehmet Sevkli
    • 2
  • Yun-Chia Liang
    • 3
  • Gunes Gencyilmaz
    • 4
  1. 1.Department of Management, BuyukcekmeceFatih UniversityIstanbulTurkey
  2. 2.Department of Industrial Engineering, BuyukcekmeceFatih UniversityIstanbulTurkey
  3. 3.Department of Industrial Engineering and ManagementYuan Ze UniversityChung-Li, Taoyuan CountyTaiwan ,R.O.C
  4. 4.Department of ManagementIstanbul Kultur UniversityIstanbulTurkey

Personalised recommendations