Advertisement

How to Use Ants for Hierarchical Clustering

  • Hanene Azzag
  • Christiane Guinot
  • Gilles Venturini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3172)

Abstract

We present in this paper, a new model for document hierarchical clustering, which is inspired from the self-assembly behavior of real ants. We have simulated the way ants build complex structures with different functions by connecting themselves to each other. Ants may thus build “chains of ants” or form “drops of ants”. The artificial ants that we have defined will similarly build a tree. Each ant represents one document. The way ants move, disconnect or connect themselves depends on the similarity between these documents. The result obtained is presented as a hierarchical structure with a series of HTML files with hyperlinks.

Keywords

Portal Site Inverse Document Frequency AntTree Algorithm Hybrid Intelligent System Linepithema Humiles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azzag, N., Monmarché, H., Slimane, M., Venturini, G., Guinot, C.: Anttree: a new model for clustering with artificial ants. In: IEEE Congress on Evolutionary Computation, Canberra, Australia, December 08-12 (2003)Google Scholar
  2. 2.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)zbMATHGoogle Scholar
  3. 3.
    Filo, D., Yang, J.: Yahoo! (1997)Google Scholar
  4. 4.
    Goss, S., Deneubourg, J.-L.: Harvesting by a group of robots. In: Varela (ed.) Proceedings of the First European Conference on Artificial Life, Paris, France, pp. 195–204 (1991), Toward a Practice of Autonomous SystemsGoogle Scholar
  5. 5.
    Guinot, C., Malvy, D.J.-M., Morizot, F., Tenenhaus, M., Latreille, J., Lopez, S., Tschachler, E., Dubertret, L.: Classification of healthy human facial skin. Textbook of Cosmetic Dermatology 3 (2003) (to appear)Google Scholar
  6. 6.
    Handl, J., Knowles, J., Dorigo, M.: On the performance of ant-based clustering. In: Abraham, A., Köppen, M., Franke, K. (eds.) Design and application of hybrid intelligent systems, Proceedings of the Third International conference on Hybrid Intelligent Systems (HIS 2003). Frontiers in Artificial intelligence and Applications, vol. 104, pp. 204–213. IOS Press, Amsterdam (2003)Google Scholar
  7. 7.
    Hölldobler, B., Wilson, E.-O.: The Ants. Springer, Berlin (1990)Google Scholar
  8. 8.
    Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall Advanced Reference Series (1988)Google Scholar
  9. 9.
    Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: On semi-automated web taxonomy construction. In: WebDB, Santa Barbara (May 2001)Google Scholar
  10. 10.
    Kuntz, P., Snyers, D., Layzell, P.: A stochastic heuristic for visualising graph clusters in a bi-dimensional space prior to partitioning. Journal of Heuritics 5(3) (October 1999)Google Scholar
  11. 11.
    Lioni, A., Sauwens, C., Theraulaz, G., Deneubourg, J.-L.: The dynamics of chain formation in oecophylla longinoda. Journal of Insect Behavior 14, 679–696 (2001)CrossRefGoogle Scholar
  12. 12.
    Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants. In: Proceedings of the Third International Conference on Simulation of Adaptive Behaviour, pp. 501–508 (1994)Google Scholar
  13. 13.
    McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of internet portals with machine learning. Information Retrieval 3(2), 127–163 (2000)CrossRefGoogle Scholar
  14. 14.
    Salton, G., Buckley, C.: Term weighting approaches in automatic text retrieval. information processing and management 25, 513–523 (1988)CrossRefGoogle Scholar
  15. 15.
    Sanderson, M., Bruce Croft, W.: Deriving concept hierarchies from text. In: Research and Development in Information Retrieval, pp. 206–213 (1999)Google Scholar
  16. 16.
    Christian Sauwens. Étude de la dynamique d’auto-assemblage chez plusieurs espèces de fourmis. Thèse de doctorat, Université libre de bruxelles (2000)Google Scholar
  17. 17.
    Theraulaz, G., Bonabeau, E., Sauwens, C., Deneubourg, J.-L., Lioni, A., Libert, F., Passera, L., Solé, R.-V.: Model of droplet formation and dynamics in the argentine ant (linepithema humile mayr). Bulletin of Mathematical Biology (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Hanene Azzag
    • 1
  • Christiane Guinot
    • 2
  • Gilles Venturini
    • 1
  1. 1.Département InformatiqueLaboratoire d’Informatique de l’Université de Tours, École Polytechnique de l’Université de ToursToursFrance
  2. 2.C.E.R.I.E.S.Neuilly sur Seine Cedex

Personalised recommendations