ACO for Continuous and Mixed-Variable Optimization

  • Krzysztof Socha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3172)


This paper presents how the Ant Colony Optimization (ACO) metaheuristic can be extended to continuous search domains and applied to both continuous and mixed discrete-continuous optimization problems. The paper describes the general underlying idea, enumerates some possible design choices, presents a first implementation, and provides some preliminary results obtained on well-known benchmark problems. The proposed method is compared to other ant, as well as non-ant methods for continuous optimization.


Probability Density Function Continuous Optimization Continuous Domain Normal Probability Density Function Future Generation Computer System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Audet, C., Dennis, J.J.E.: Pattern Search Algorithms for Mixed Variable Programming. SIAM Journal on Optimization 11(3), 573–594 (2001)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bilchev, G., Parmee, I.C.: The Ant Colony Metaphor for Searching Continuous Design Spaces. In: Fogarty, T.C. (ed.) AISB-WS 1995. LNCS, vol. 993, pp. 25–39. Springer, Heidelberg (1995)Google Scholar
  3. 3.
    Bosman, P.A.N., Thierens, D.: Continuous Iterated Density Estimation Evolutionary Algorithms within the IDEA Framework. In: Pelikan, M., Mühlenbein, H., Rodriguez, A.O. (eds.) Proceedings of OBUPM Workshop at GECCO-2000, pp. 197–200. Morgan-Kaufmann Publishers, San Francisco (2000)Google Scholar
  4. 4.
    Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates. Annals of Mathematical Statistics 29(2), 610–611 (1958)zbMATHCrossRefGoogle Scholar
  5. 5.
    Chelouah, R., Siarry, P.: Enhanced Continuous Tabu Search. In: Voss, S., Martello, S., Osman, I.H., Roucairol, C. (eds.) Meta-Heuristics Advances and Trends in Local Search Paradigms for Optimization, vol. 4, pp. 49–61. Kluwer Academic Publishers, Boston (1999)Google Scholar
  6. 6.
    Chelouah, R., Siarry, P.: A Continuous Genetic Algorithm Designed for the Global Optimization of Multimodal Functions. Journal of Heuristics 6, 191–213 (2000)zbMATHCrossRefGoogle Scholar
  7. 7.
    Dorigo, M., Di Caro, G.: The Ant Colony Optimization meta-heuristic. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, McGraw- Hill, New York (1999)Google Scholar
  8. 8.
    Dréo, J., Siarry, P.: Continuous Interacting Ant Colony Algorithm Based on Dense Heterarchy. Future Generation Computer Systems (to appear)Google Scholar
  9. 9.
    Dréo, J., Siarry, P.: A New Ant Colony Algorithm Using the Heterarchical Concept Aimed at Optimization of Multiminima Continuous Functions. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 216–221. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Guntsch, M., Middendorf, M.: A population based approach for ACO. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 71–80. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Kincaid, R.K., Griffith, S., Sykes, R., Sobieszczanski-Sobieski, J.: A Bell-Curve Genetic Algorithm for Mixed Continuous and Discrete Optimization Problems. In: Proceedings of 43rd AIAA Structures, Structural Dynamics, and Materials Conference, AIAA, Denver, CO, USA (2002)Google Scholar
  12. 12.
    Mathur, M., Karale, S.B., Priye, S., Jyaraman, V.K., Kulkarni, B.D.: Ant Colony Approach to Continuous Function Optimization. Ind. Eng. Chem. Res. 39, 3814–3822 (2000)CrossRefGoogle Scholar
  13. 13.
    Monmarché, N., Venturini, G., Slimane, M.: On how Pachycondyla apicalis ants suggest a new search algorithm. Future Generation Computer Systems 16, 937–946 (2000)CrossRefGoogle Scholar
  14. 14.
    Očenášek, J., Schwarz, J.: Estimation Distribution Algorithm for Mixed Continuous-Discreet Optimization Problems. In: Proceedings of the 2nd Euro- Inernational Symposium on Computational Inteligence, pp. 227–232. IOS Press, Amsterdam (2002)Google Scholar
  15. 15.
    Siarry, P., Berthiau, G., Durbin, F., Haussy, J.: Enhanced Simulated Annealing for Globally Minimizing Functions of Many Continuous Variables. ACM Transactions on Mathematical Software 23(2), 209–228 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Stützle, T., Hoos, H.H.: MAX-MIN Ant System. Future Generation Computer Systems 16(8), 889–914 (2000)CrossRefGoogle Scholar
  17. 17.
    Wodrich, M., Bilchev, G.: Cooperative distributed search: the ant’s way. Control & Cybernetics 3, 413–446 (1997)MathSciNetGoogle Scholar
  18. 18.
    Yuan, B., Gallagher, M.: Playing in Continuous Spaces: Some Analysis and Extension of Population-Based Incremental Learning. In: Sarker, R., et al. (eds.) Proceedings of Congress of Evolutionary Computation (CEC), pp. 443–450 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Krzysztof Socha
    • 1
  1. 1.IRIDIAUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations