Time-Scattered Heuristic for the Hardware Implementation of Population-Based ACO

  • Bernd Scheuermann
  • Michael Guntsch
  • Martin Middendorf
  • Hartmut Schmeck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3172)


We present a new kind of heuristic guidance as an extension to the Population-based Ant Colony Optimization (P-ACO) implemented in hardware on a Field Programmable Gate Array (FPGA). The heuristic information is obtained by transforming standard heuristic information into small time-scattered heuristic-vectors of favourable ant decisions. This approach is suited for heuristics which allow for an a priori calculation of the heuristics information. Using the proposed method, an ant can build-up a solution in quasi-linear time. Experimental studies measure the performance of the time-scattered heuristic. A comparison with the standard heuristic and candidate lists is also given.


Field Programmable Gate Array Hardware Implementation Candidate List Heuristic Information Travel Salesperson Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence. From Natural to Artificial Systems. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  2. 2.
    Diessel, O., ElGindy, H., Middendorf, M., Guntsch, M., Scheuermann, B., Schmeck, H., So, K.: Population based ant colony optimization on FPGA. In: IEEE International Conference on Field-Programmable Technology (FPT), pp. 125–132 (December 2002)Google Scholar
  3. 3.
    Dorigo, M., Di Caro, G.: The ant colony optimization meta-heuristic. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 11–32. McGraw-Hill, New York (1999)Google Scholar
  4. 4.
    Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Artificial Life 5(2), 137–172 (1999)CrossRefGoogle Scholar
  5. 5.
    Dorigo, M., Gambardella, L.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary 1, 53–66 (1997)CrossRefGoogle Scholar
  6. 6.
    Guntsch, M., Middendorf, M.: A population based approach for ACO. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 72–81. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: A case study in local optimization. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, Wiley, Chichester (1995)Google Scholar
  8. 8.
    Merkle, D., Middendorf, M.: Fast ant colony optimization on runtime reconfigurable processor arrays. Genetic Programming and Evolvable Machines 3(4), 345–361 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Randall, M., Lewis, A.: A parallel implementation of ant colony optimization. Journal of Parallel and Distributed Computing 62(9), 1421–1432 (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Reinelt, G.: TSPLIB - a traveling salesman problem library. ORSA Journal on Computing 3, 376–384 (1991)zbMATHGoogle Scholar
  11. 11.
    Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applications. LNCS, vol. 840. Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Scheuermann, B., So, K., Guntsch, M., Middendorf, M., Diessel, O., ElGindy, H., Schmeck, H.: FPGA implementation of population-based ant colony optimization. Applied Soft Computing 4, 303–322 (2004)CrossRefGoogle Scholar
  13. 13.
    Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423 and s623–656 (1948)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Stützle, T., Dorigo, M.: ACO algorithms for the quadratic assignment problem. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 33–50. McGraw-Hill, New York (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Bernd Scheuermann
    • 1
  • Michael Guntsch
    • 1
  • Martin Middendorf
    • 2
  • Hartmut Schmeck
    • 1
  1. 1.Institute AIFBUniversity of KarlsruheGermany
  2. 2.Institute of Computer ScienceUniversity of LeipzigGermany

Personalised recommendations