Reasons of ACO’s Success in TSP

  • Osvaldo Gómez
  • Benjamín Barán
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3172)


Ant Colony Optimization (ACO) is a metaheuristic inspired by the foraging behavior of ant colonies that has empirically shown its effectiveness in the resolution of hard combinatorial optimization problems like the Traveling Salesman Problem (TSP). Still, very little theory is available to explain the reasons underlying ACO’s success. An ACO alternative called Omicron ACO (OA), first designed as an analytical tool, is presented. This OA is used to explain the reasons of elitist ACO’s success in the TSP, given a globally convex structure of its solution space.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birattari, M., Di Caro, G., Dorigo, M.: For a Formal Foundation of the Ant Programming Approach to Combinatorial Optimization. Part 1: The problem, the representation, and the general solution strategy. Technical Report TR-H-301, ATR-Human Information Processing Labs, Kyoto, Japan (2000)Google Scholar
  2. 2.
    Boese, K.D.: Cost Versus Distance in the Traveling Salesman Problem. Technical Report 950018, Univ. of California, Los Angeles, Computer Science (May 19, 1995)Google Scholar
  3. 3.
    Dorigo, M., Di Caro, G.: The Ant Colony Optimization Meta-Heuristic. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 11–32. McGraw-Hill, London (1999)Google Scholar
  4. 4.
    Dorigo, M., Stützle, T.: An Experimental Study of the Simple Ant Colony Optimization Algorithm. In: 2001 WSES International Conference on Evolutionary Computation (EC 2001), WSES-Press International (2001)Google Scholar
  5. 5.
    Guntsch, M., Middendorf, M.: A Population Based Approach for ACO. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 71–80. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Guntsch, M., Middendorf, M.: Applying Population Based ACO to Dynamic Optimization Problems. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 111–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Gutjahr, W.J.: A graph-based Ant System and its convergence. Future Generation Computer Systems 16(8), 873–888 (2000)CrossRefGoogle Scholar
  8. 8.
    Gutjahr, W.J.: ACO Algorithms with Guaranteed Convergence to the Optimal Solution. Information Processing Letters 82(3), 145–153 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hu, T.C., Klee, V., Larman, D.: Optimization of globally convex functions. SIAM Journal on Control and Optimization 27(5), 1026–1047 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Meuleau, N., Dorigo, M.: Ant colony optimization and stochastic gradient descent. Artificial Life 8(2), 103–121 (2002)CrossRefGoogle Scholar
  11. 11.
    Stützle, T., Dorigo, M.: A Short Convergence Proof for a Class of Ant Colony Optimization Algorithms. IEEE Transactions on Evolutionary Computation 6, 358–365 (2002)CrossRefGoogle Scholar
  12. 12.
    Stützle, T., Hoos, H.H.: MAX-MIN Ant System. Future Generation Computer Systems 16(8), 889–914 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Osvaldo Gómez
    • 1
  • Benjamín Barán
    • 1
  1. 1.Centro Nacional de ComputaciónUniversidad Nacional de AsunciónParaguay

Personalised recommendations