On the Design of ACO for the Biobjective Quadratic Assignment Problem

  • Manuel López-Ibáñez
  • Luís Paquete
  • Thomas Stützle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3172)


Few applications of ACO algorithms to multiobjective problems have been presented so far and it is not clear how to design an effective ACO algorithms for such problems. In this article, we study the performance of several ACO variants for the biobjective Quadratic Assignment Problem that are based on two fundamentally different search strategies. The first strategy is based on dominance criteria, while the second one exploits different scalarizations of the objective function vector. Further variants differ in the use of multiple colonies, the use of local search, and the pheromone update strategy. The experimental results indicate that the use of local search procedures and the correlation between objectives play an essential role in the performance of the variants studied in this paper.


Local Search Pareto Front Quadratic Assignment Problem Nondominated Solution Local Search Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burkard, R.E., C¸ela, E., Pardalos, P.M., Pitsoulis, L.S.: The quadratic assignment problem. In: Pardalos, P.M., Du, D.-Z. (eds.) Handbook of Combinatorial Optimization, pp. 241–338. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  2. 2.
    Cȩla, E.: The Quadratic Assignment Problem: Theory and Algorithms. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  3. 3.
    Grunert da Fonseca, V., Fonseca, C.M., Hall, A.O.: Inferential performance assessment of stochastic optimisers and the attainment function. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 213–225. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Dean, A., Voss, D.: Design and Analysis of Experiments. Springer, Heidelberg (1999)zbMATHCrossRefGoogle Scholar
  5. 5.
    Doerner, K., Hartl, R.F., Reimann, M.: Cooperative ant colonies for optimizing resource allocation in transportation. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 70–79. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  7. 7.
    Gilmore, P.C.: Optimal and suboptimal algorithms for the quadratic assignment problem. Journal of the SIAM 10, 305–313 (1962)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Guntsch, M.G., Middendorf, M.: Solving multi-criteria optimization problems with population-based ACO. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 464–478. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Hamacher, H., Nickel, S., Tenfelde-Podehl, D.: Facilities layout for social institutions. In: Operation Research Proceedings 2001, pp. 229–236. Springer, Heidelberg (2001)Google Scholar
  10. 10.
    Iredi, S., Merkle, D., Middendorf, M.: Bi-criterion optimization with multi colony ant algorithms. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 359–372. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Knowles, J., Corne, D.: Towards landscape analysis to inform the design of hybrid local search for the multiobjective quadratic assignment problem. In: Abraham, A., et al. (eds.) Soft Computing Systems: Design, Management and Applications, pp. 271–279. IOS Press, Amsterdam (2002)Google Scholar
  12. 12.
    Knowles, J.D., Corne, D.W.: Instance generators and test suites for the multiobjective quadratic assignment problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 295–310. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: An experimental study. In: Gandibleux, X., et al. (eds.) Metaheuristics for Multiobjective Optimisation. LNEMS 535, Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Paquete, L., Stützle, T.: A study of local search algorithms for the biobjective QAP with correlated flow matrices. European Journal of Operational Research (2004) (to appear)Google Scholar
  15. 15.
    Sahni, S., Gonzalez, T.: P-complete approximation problems. Journal of the ACM 23, 555–565 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Stützle, T., Hoos, H.H.: MAX-MIN Ant System. Future Generation Computer Systems 16, 889–914 (2000)CrossRefGoogle Scholar
  17. 17.
    Taillard, É.D.: A comparison of iterative searches for the quadratic assignment problem. Location Science 3, 87–105 (1995)zbMATHCrossRefGoogle Scholar
  18. 18.
    Taillard, É.D.: Robust Taboo Search for the Quadratic Assingnment Problem. Parallel Computing 17, 443–455 (1991)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation 7, 117–132 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Manuel López-Ibáñez
    • 1
  • Luís Paquete
    • 1
  • Thomas Stützle
    • 1
  1. 1.Darmstadt University of TechnologyComputer Science Department, Intellectics GroupDarmstadtGermany

Personalised recommendations