Advertisement

Gathering Multiple Robotic A(ge)nts with Limited Sensing Capabilities

  • Noam Gordon
  • Israel A. Wagner
  • Alfred M. Bruckstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3172)

Abstract

We consider a swarm of simple ant-robots (or a(ge)nts) on the plane, which are anonymous, homogeneous, memoryless and lack communication capabilities. Their sensors are range-limited and they are unable to measure distances. Rather, they can only acquire the directions to their neighbors. We propose a simple algorithm, which makes them gather in a small region or a point. We discuss three variants of the problem: A continuous-space discrete-time problem, a continuous-time limit of that problem, and a discrete-space discrete-time analog. Using both analysis and simulations, we show that, interestingly, the system’s global behavior in the continuous-time limit is fundamentally different from that of the discrete-time case, due to hidden “Zenoness” in it.

Keywords

Mobile Robot Visibility Graph Hybrid Automaton Allowable Region Movement Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. on Robotics and Automation 15(5), 818–828 (1999)CrossRefGoogle Scholar
  2. 2.
    Bruckstein, M., Cohen, N., Efrat, A.: Ants, crickets and frogs in cyclic pursuit. Technical Report CIS-9105, Technion – IIT (1991)Google Scholar
  3. 3.
    Bruckstein, M., Mallows, C.L., Wagner, I.A.: Probabilistic pursuits on the grid. American Mathematical Monthly 104(4), 323–343 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bruckstein, M., Zeitouni, O.: A puzzling feedback quantizer. Technical Report 879, EE Department, Technion IIT (May 1993)Google Scholar
  5. 5.
    The Center of Intelligent Systems, Technion IIT web site: http://www.cs.technion.ac.il/Labs/Isl/index.html
  6. 6.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Proc. of ICALP 2003 (2003)Google Scholar
  7. 7.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of autonomous mobile robots with limited visibility. In: Proc. of STACS 2001 (2001)Google Scholar
  8. 8.
    Gordon, N., Wagner, I.A., Bruckstein, A.M.: Discrete bee dance algorithms for pattern formation on a grid. In: Proc. of IEEE Intl. Conf. on Intelligent Agent Technology (IAT 2003), pp. 545–549 (October 2003)Google Scholar
  9. 9.
    Henzinger, T.A.: The theory of hybrid automata. In: Proc. of LICS, pp. 278–292 (1996)Google Scholar
  10. 10.
    Hughes, B.D.: Random Walks and Random Environments, vol. 1. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  11. 11.
    Lin, Z., Broucke, M.E., Francis, B.A.: Local control strategies for groups of mobile autonomous agents. IEEE Trans. on Automatic Control 49(4), 622–629 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Marshall, J.A., Broucke, M.E., Francis, B.A.: A pursuit strategy for wheeledvehicle formations. In: Proc. of CDC 2003, pp. 2555–2560 (2003)Google Scholar
  13. 13.
    Melhuish, C.R., Holland, O., Hoddell, S.: Convoying: using chorusing to form travelling groups of minimal agents. Robotics and Autonomous Systems 28, 207–216 (1999)CrossRefGoogle Scholar
  14. 14.
    Schlude, K.: From robotics to facility location: Contraction functions, weber point, convex core. Technical Report 403, CS, ETHZ (2003)Google Scholar
  15. 15.
    Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns with many mobile robots. Journal of Robotic Systems 13(3), 127–139 (1996)zbMATHCrossRefGoogle Scholar
  16. 16.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM Journal on Computing 28(4), 1347–1363 (1999)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Noam Gordon
    • 1
  • Israel A. Wagner
    • 1
  • Alfred M. Bruckstein
    • 1
  1. 1.Center for Intelligent Systems, CS DepartmentTechnion Israel Institute of TechnologyHaifaIsrael

Personalised recommendations