Evolution of Direct Communication for a Swarm-bot Performing Hole Avoidance

  • Vito Trianni
  • Thomas H. Labella
  • Marco Dorigo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3172)


Communication is often required for coordination of collective behaviours. Social insects like ants, termites or bees make use of different forms of communication, which can be roughly classified in three classes: indirect (stigmergic) communication, direct interaction and direct communication. The use of stigmergic communication is predominant in social insects (e.g., the pheromone trails in ants), but also direct interactions (e.g., antennation in ants) and direct communication can be observed (e.g., the waggle dance of honey bee workers). Direct communication may be beneficial when a fast reaction is expected, as for instance, when a danger is detected and countermeasures must be taken. This is the case of hole avoidance, the task studied in this paper: a group of self-assembled robots – called swarm-bot – coordinately explores an arena containing holes, avoiding to fall into them. In particular, we study the use of direct communication in order to achieve a reaction to the detection of a hole faster than with the sole use of direct interactions through physical links. We rely on artificial evolution for the synthesis of neural network controllers, showing that evolving behaviours that make use of direct communication is more effective than exploiting direct interactions only.


evolutionary robotics swarm robotics communication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balch, T., Arkin, R.C.: Communication in reactive multiagent robotic systems. Autonomous Robots 1(1), 27–52 (1995)CrossRefGoogle Scholar
  2. 2.
    Baldassarre, G., Nolfi, S., Parisi, D.: Evolution of collective behavior in a team of physically linked robots. In: Gunther, R., Guillot, A., Meyer, J.-A. (eds.) Applications of Evolutionary Computing - Proceedings of the Second European Workshop on Evolutionary Robotics (EvoWorkshops2003: EvoROB), pp. 581–592. Springer, Berlin (2003)Google Scholar
  3. 3.
    Cao, Y.U., Fukunaga, A.S., Kahng, A.B.: Cooperative mobile robotics: Antecedents and directions. Autonomous Robots 4, 1–23 (1997)CrossRefGoogle Scholar
  4. 4.
    Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and stigmergy. Future Generation Computer Systems 16(8), 851–871 (2000)CrossRefGoogle Scholar
  5. 5.
    Dorigo, M., Trianni, V., Sa̧hin, E., Groß, R., Labella, T.H., Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., Gambardella, L.M.: Evolving self-organizing behaviors for a swarm-bot. Autonomous Robots 17(2-3), 223–245 (2004)CrossRefGoogle Scholar
  6. 6.
    Dudek, G., Jenkin, M., Milios, E.: A taxonomy of multirobot systems. In: Balch, T., Parker, L.E. (eds.) Robot Teams: From Diversity to Polymorphism, A K Peters Ltd., Wellesley (2002)Google Scholar
  7. 7.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  8. 8.
    Goss, S., Aron, S., Deneubourg, J.-L., Pasteels, J.M.: Self-organized shortcuts in the argentine ant. Naturwissenchaften 76, 579–581 (1989)CrossRefGoogle Scholar
  9. 9.
    Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux 6, 41–81 (1959)Google Scholar
  10. 10.
    Hölldobler, B., Wilson, E.O.: Journey to the Ants: A Story of Scientific Exploration. Bellknap Press/Harvard University Press, Cambridge, MA (1994)Google Scholar
  11. 11.
    Kube, C.R., Zhang, H.: Task modelling in collective robotics. Autonomous Robots 4, 53–72 (1997)CrossRefGoogle Scholar
  12. 12.
    Matarić, M.J.: Using communication to reduce locality in distributed multiagent learning. Journal of Experimental and Theoretical Artificial Intelligence, Special Issue on Learning in DAI Systems 10(3), 357–369 (1998)zbMATHGoogle Scholar
  13. 13.
    Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.V., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gambardella, L.M., Dorigo, M.: SWARM-BOT: A new distributed robotic concept. Autonomous Robots 17(2-3), 193–221 (2004)CrossRefGoogle Scholar
  14. 14.
    Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. John Wiley & Sons, Inc., New York (1997)zbMATHGoogle Scholar
  15. 15.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press/Bradford Books, Cambridge, MA (2000)Google Scholar
  16. 16.
    Seeley, T.: The Wisdom of the Hive. Harvard University Press, Cambridge, MA (1995)Google Scholar
  17. 17.
    Trianni, V., Nolfi, S., Dorigo, M.: Hole avoidance: Experiments in coordinated motion on rough terrain. In: Groen, F., Amato, N., Bonarini, A., Yoshida, E., Kröse, B. (eds.) Intelligent Autonomous Systems, vol. 8, pp. 29–36. IOS Press, Amsterdam (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Vito Trianni
    • 1
  • Thomas H. Labella
    • 1
  • Marco Dorigo
    • 1
  1. 1.IRIDIAUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations