Skip to main content

Theory and Applied Computing: Observations and Anecdotes

  • Conference paper
Mathematical Foundations of Computer Science 2004 (MFCS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3153))

Abstract

While the kind of theoretical computer science being studied in academe is still highly relevant to systems-oriented research, it is less relevant to applications-oriented research. In applied computing, theoretical elements are used only when strictly relevant to the practical problem at hand. Theory is often combined judiciously with empiricism. And increasingly, theory is most useful when cross-pollinated with ideas and methods from other fields. We will illustrate these points by describing several recent projects at Mitsubishi Electric Research Labs that have heavy mathematical and algorithmic underpinnings. These projects include new algorithms for: traffic analysis; geometric layout; belief propagation in graphical models; dimensionality reduction; and shape representation. Practical applications of this work include elevator dispatch, stock cutting, error-correcting codes, data mining, and digital typography. In all cases theoretical concepts and results are used effectively to solve practical problems of commercial import.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 1 and 2. Athena Scientific, Belmont (2000)

    Google Scholar 

  2. Yokouchi, K., Ideno, H., Ota, M.: Car-navigation systems. Mitsubishi Electric Advance 91, 10–14 (2000)

    Google Scholar 

  3. Nishiuma, N., Kumazawa, H., Goto, Y., Nikovski, D., Brand, M.: Traffic prediction using singular value decomposition. In: Proceedings of the 11th ITS World Congress (to appear), Nagoya, Japan (2004)

    Google Scholar 

  4. Nagel, K., Rasmussen, S.: Traffic at the edge of chaos. In: Artificial Life IV: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems, MIT Press, Cambridge (1994)

    Google Scholar 

  5. Nikovski, D., Brand, M.: Decision-theoretic group elevator scheduling. In: 13th International Conference on Automated Planning and Scheduling, Trento, Italy, pp. 133–142. AAAI, Menlo Park (2003)

    Google Scholar 

  6. Klau, G., Lesh, N., Marks, J., Mitzenmacher, M.: Human-guided tabu search. In: Proceedings of AAAI 2002, pp. 41–47 (2002)

    Google Scholar 

  7. Lesh, N., Mitzenmacher, M., Whitesides, S.: A complete and effective move set for simplified protein folding. In: Proceedings of the 7th Intl. Conf. on Research in Computational Molecular Biology, pp. 188–195 (2003)

    Google Scholar 

  8. Lesh, N., Marks, J., McMahon, A., Mitzenmacher, M.: New exhaustive, heuristic, and interactive approaches to 2D rectangular strip packing. Technical Report TR2003-05, Mitsubishi Electric Research Laboratories, MERL (2003)

    Google Scholar 

  9. Lesh, N., Marks, J., McMahon, A., Mitzenmacher, M.: Exhaustive approaches to 2D rectangular perfect packings. Information Processing Letters 90, 7–14 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Baker, B.S., Coffman, E.G., Rivest, R.L.: Orthogonal packings in two dimensions. SIAM Journal on Computing 9, 846–855 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its generalizations. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium, pp. 239–269. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  12. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free energy approximations and generalized belief propagation algorithms. Technical Report TR2004-040, Mitsubishi Electric Research Laboratories, MERL (2004)

    Google Scholar 

  13. Welling, M., Teh, Y.W.: Belief optimization for binary networks: A stable alternative to belief propagation. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence, pp. 554–561 (2001)

    Google Scholar 

  14. Yuille, A.L.: CCCP algorithms to minimize the Bethe and Kikuchi free energies: Convergent alternatives to belief propagation. Neural Computation 14, 1691–1722 (2002)

    Article  MATH  Google Scholar 

  15. Shibuya, T., Harada, K., Tohyama, R., Sakaniwa, K.: Iterative decoding based on concave-convex procedure (in review) (2004)

    Google Scholar 

  16. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Characterizing belief propagation and its generalizations. Technical Report TR2001-15, Mitsubishi Electric Research Laboratories, MERL (2001)

    Google Scholar 

  17. Yedidia, J.S., Chen, J., Fossorier, M.: Generating code representations suitable for belief propagation decoding. In: Proceedings of the 40th Allerton Conference on Commmunication, Control, and Computing (2002)

    Google Scholar 

  18. Tappen, M.F., Freeman, W.T., Adelson, E.H.: Recovering intrinsic images from a single image. In: Advances in Neural Information Processing Systems, vol. 15, MIT Press, Cambridge (2003)

    Google Scholar 

  19. Dauwels, J., Loeliger, H.A., Merkli, P., Ostojic, M.: Structured-summary propagation, LFSR synchronization, and low-complexity trellis decoding. In: Proceedings of the 41st Allerton Conference on Communication, Control, and Computing, pp. 459–467 (2003)

    Google Scholar 

  20. Storkey, A.: Generalized propagation for fast fourier transforms with partial or missing data. In: Advances in Neural Information Processing Systems 16, MIT Press, Cambridge (2004)

    Google Scholar 

  21. Brand, M.: Incremental singular value decomposition of uncertain data with missing values. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 707–720. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Brand, M.: Continuous nonlinear dimensionality reduction by kernel eigenmaps. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the International Joint Conference on Artificial Intelligence, San Mateo, CA, pp. 547–552. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  23. Adode Systems, Inc.: Adobe Type 1 Font Format. Addison Wesley (1990)

    Google Scholar 

  24. Frisken, S., Perry, R., Rockwood, A., Jones, T.: Adaptively sampled distance fields: A general representation of shape for computer graphics. In: Proceedings of SIGGRAPH 2000, pp. 249–254 (2000)

    Google Scholar 

  25. Perry, R., Frisken, S.: A new framework for representing, rendering, editing, and animating type (in preparation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brand, M. et al. (2004). Theory and Applied Computing: Observations and Anecdotes. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds) Mathematical Foundations of Computer Science 2004. MFCS 2004. Lecture Notes in Computer Science, vol 3153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28629-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28629-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22823-3

  • Online ISBN: 978-3-540-28629-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics