Theory and Applied Computing: Observations and Anecdotes

  • Matthew Brand
  • Sarah Frisken
  • Neal Lesh
  • Joe Marks
  • Daniel Nikovski
  • Ron Perry
  • Jonathan Yedidia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3153)


While the kind of theoretical computer science being studied in academe is still highly relevant to systems-oriented research, it is less relevant to applications-oriented research. In applied computing, theoretical elements are used only when strictly relevant to the practical problem at hand. Theory is often combined judiciously with empiricism. And increasingly, theory is most useful when cross-pollinated with ideas and methods from other fields. We will illustrate these points by describing several recent projects at Mitsubishi Electric Research Labs that have heavy mathematical and algorithmic underpinnings. These projects include new algorithms for: traffic analysis; geometric layout; belief propagation in graphical models; dimensionality reduction; and shape representation. Practical applications of this work include elevator dispatch, stock cutting, error-correcting codes, data mining, and digital typography. In all cases theoretical concepts and results are used effectively to solve practical problems of commercial import.


Belief Propagation Variable Node Apply Computing Theoretical Computer Science Nonlinear Dimensionality Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 1 and 2. Athena Scientific, Belmont (2000)Google Scholar
  2. 2.
    Yokouchi, K., Ideno, H., Ota, M.: Car-navigation systems. Mitsubishi Electric Advance 91, 10–14 (2000)Google Scholar
  3. 3.
    Nishiuma, N., Kumazawa, H., Goto, Y., Nikovski, D., Brand, M.: Traffic prediction using singular value decomposition. In: Proceedings of the 11th ITS World Congress (to appear), Nagoya, Japan (2004)Google Scholar
  4. 4.
    Nagel, K., Rasmussen, S.: Traffic at the edge of chaos. In: Artificial Life IV: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems, MIT Press, Cambridge (1994)Google Scholar
  5. 5.
    Nikovski, D., Brand, M.: Decision-theoretic group elevator scheduling. In: 13th International Conference on Automated Planning and Scheduling, Trento, Italy, pp. 133–142. AAAI, Menlo Park (2003)Google Scholar
  6. 6.
    Klau, G., Lesh, N., Marks, J., Mitzenmacher, M.: Human-guided tabu search. In: Proceedings of AAAI 2002, pp. 41–47 (2002)Google Scholar
  7. 7.
    Lesh, N., Mitzenmacher, M., Whitesides, S.: A complete and effective move set for simplified protein folding. In: Proceedings of the 7th Intl. Conf. on Research in Computational Molecular Biology, pp. 188–195 (2003)Google Scholar
  8. 8.
    Lesh, N., Marks, J., McMahon, A., Mitzenmacher, M.: New exhaustive, heuristic, and interactive approaches to 2D rectangular strip packing. Technical Report TR2003-05, Mitsubishi Electric Research Laboratories, MERL (2003)Google Scholar
  9. 9.
    Lesh, N., Marks, J., McMahon, A., Mitzenmacher, M.: Exhaustive approaches to 2D rectangular perfect packings. Information Processing Letters 90, 7–14 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Baker, B.S., Coffman, E.G., Rivest, R.L.: Orthogonal packings in two dimensions. SIAM Journal on Computing 9, 846–855 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its generalizations. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium, pp. 239–269. Morgan Kaufmann, San Francisco (2003)Google Scholar
  12. 12.
    Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free energy approximations and generalized belief propagation algorithms. Technical Report TR2004-040, Mitsubishi Electric Research Laboratories, MERL (2004)Google Scholar
  13. 13.
    Welling, M., Teh, Y.W.: Belief optimization for binary networks: A stable alternative to belief propagation. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence, pp. 554–561 (2001)Google Scholar
  14. 14.
    Yuille, A.L.: CCCP algorithms to minimize the Bethe and Kikuchi free energies: Convergent alternatives to belief propagation. Neural Computation 14, 1691–1722 (2002)zbMATHCrossRefGoogle Scholar
  15. 15.
    Shibuya, T., Harada, K., Tohyama, R., Sakaniwa, K.: Iterative decoding based on concave-convex procedure (in review) (2004)Google Scholar
  16. 16.
    Yedidia, J.S., Freeman, W.T., Weiss, Y.: Characterizing belief propagation and its generalizations. Technical Report TR2001-15, Mitsubishi Electric Research Laboratories, MERL (2001)Google Scholar
  17. 17.
    Yedidia, J.S., Chen, J., Fossorier, M.: Generating code representations suitable for belief propagation decoding. In: Proceedings of the 40th Allerton Conference on Commmunication, Control, and Computing (2002)Google Scholar
  18. 18.
    Tappen, M.F., Freeman, W.T., Adelson, E.H.: Recovering intrinsic images from a single image. In: Advances in Neural Information Processing Systems, vol. 15, MIT Press, Cambridge (2003)Google Scholar
  19. 19.
    Dauwels, J., Loeliger, H.A., Merkli, P., Ostojic, M.: Structured-summary propagation, LFSR synchronization, and low-complexity trellis decoding. In: Proceedings of the 41st Allerton Conference on Communication, Control, and Computing, pp. 459–467 (2003)Google Scholar
  20. 20.
    Storkey, A.: Generalized propagation for fast fourier transforms with partial or missing data. In: Advances in Neural Information Processing Systems 16, MIT Press, Cambridge (2004)Google Scholar
  21. 21.
    Brand, M.: Incremental singular value decomposition of uncertain data with missing values. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 707–720. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Brand, M.: Continuous nonlinear dimensionality reduction by kernel eigenmaps. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the International Joint Conference on Artificial Intelligence, San Mateo, CA, pp. 547–552. Morgan Kaufmann, San Francisco (2003)Google Scholar
  23. 23.
    Adode Systems, Inc.: Adobe Type 1 Font Format. Addison Wesley (1990)Google Scholar
  24. 24.
    Frisken, S., Perry, R., Rockwood, A., Jones, T.: Adaptively sampled distance fields: A general representation of shape for computer graphics. In: Proceedings of SIGGRAPH 2000, pp. 249–254 (2000)Google Scholar
  25. 25.
    Perry, R., Frisken, S.: A new framework for representing, rendering, editing, and animating type (in preparation)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Matthew Brand
    • 1
  • Sarah Frisken
    • 1
  • Neal Lesh
    • 1
  • Joe Marks
    • 1
  • Daniel Nikovski
    • 1
  • Ron Perry
    • 1
  • Jonathan Yedidia
    • 1
  1. 1.Mitsubishi Electric Research Labs (MERL)CambridgeUSA

Personalised recommendations