Advertisement

Membership and Reachability Problems for Row-Monomial Transformations

  • Alexei Lisitsa
  • Igor Potapov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3153)

Abstract

In this paper we study the membership and vector reachability problems for labelled transition systems with row-monomial transformations. We show the decidability of these problems for row-monomial martix semigroups over rationals and extend these results to the wider class of matrix semigroups. After that we apply our methods to reachability problems for a class of transition systems which turn out to be equivalent to specific counter machines.

Keywords

Cayley Graph Regular Language Commutative Semigroup Label Transition System Membership Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babai, L., Beals, R., Cai, J., Ivanyos, G., Luks, E.M.: Multiplicative equations over commuting matrices. In: ACM-SIAM symposium on Discrete algorithms, pp. 28–30 (1996)Google Scholar
  2. 2.
    Bestel, J., Karhumaki, J.: Combinatorics on Words - A Tutorial. Bulletin of the EATCS, 178–228 (February 2003)Google Scholar
  3. 3.
    Cai, J.-y., Lipton, R.J., Zalcstein, Y.: The complexity of the membership problem for 2-generated commutative semigroups of rational matrices. In: 35th Annual Symposium on Foundations of Computer Science, pp. 135–142 (1994)Google Scholar
  4. 4.
    Cassaigne, J., Karhumaki, J.: Examples of undecidable problems for 2-generator matrix semigroups. Theoretical Computer Science 204(1), 29–34 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and Presburger arithmetic. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Contejean, E., Devie, H.: An efficient algorithm for solving systems of Diophantine equations. Information and Computation 113(1), 143–172 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Contekean, E., Ajil, F.: Complete Solving of Linear Diophantine Equations and Inequations without Adding Variables. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 1–17. Springer, Heidelberg (1995)Google Scholar
  8. 8.
    Clifford, A.H., Preston, G.B.: The algebraic theory of semigroups, vol. I. American Mathematical Society, Providence, Rhode Island (1961)zbMATHGoogle Scholar
  9. 9.
    Esparza, J., Finkel, A., Mayr, R.: On the Verification of Broadacst Protocols. In: Proc. LICS 1999, pp. 352–359 (1999)Google Scholar
  10. 10.
    Finkel, A., Leroux, J.: How to compose Presburger-accelerations: Applications to broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 145–156. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York (1966)zbMATHGoogle Scholar
  12. 12.
    Halava, V., Harju, T.: Mortality in Matrix Semigroups. American Mathematical Monthly 108(7), 649–653 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kannan, R., Lipton, R.J.: Polynomial-time algorithm for the orbit problem. Journal of the ACM (JACM) 33(4), 808–821 (1986)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Parikh, R.: On context-free languages. J. ACM 13, 570–581 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Paterson, M.: Unsolvability in 3 × 3 matrices. Studies in Applied Mathematics 49, 105–107 (1970)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alexei Lisitsa
    • 1
  • Igor Potapov
    • 1
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolU.K

Personalised recommendations