Advertisement

Epistemic Foundation of the Well-Founded Semantics over Bilattices

  • Yann Loyer
  • Umberto Straccia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3153)

Abstract

We define new, both model-theoretical and fixpoint-based, characterizations of the well-founded semantics for logic programs in the general setting of bilattices. This work lights the role of the CWA, used in the well-founded semantics as a carrier of falsehood, and shows that the definition of that semantics does not require any separation of positive and negative information nor any program transformation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arieli, O.: Paraconsistent declarative semantics for extended logic programs. Annals of Mathematics and Artificial Intelligence 36(4), 381–417 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arieli, O., Avron, A.: The value of the four values. Artificial Intelligence Journal 102(1), 97–141 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Belnap, N.D.: A useful four-valued logic. In: Epstein, G., Dunn, J.M. (eds.) Modern uses of multiple-valued logic, pp. 5–37. Reidel, Dordrecht (1977)Google Scholar
  4. 4.
    Blair, H., Subrahmanian, V.S.: Paraconsistent logic programming. Theoretical Computer Science 68, 135–154 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and data bases, pp. 293–322. Plenum Press, New York (1978)Google Scholar
  6. 6.
    Damásio, C.V., Pereira, L.M.: A survey of paraconsistent semantics for logic programs. In: Gabbay, D., Smets, P. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, pp. 241–320. Kluwer, Dordrecht (1998)Google Scholar
  7. 7.
    Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming language. Journal of the ACM (JACM) 23(4), 733–742 (1976)zbMATHCrossRefGoogle Scholar
  8. 8.
    Fitting, M.C.: The family of stable models. Journal of Logic Programming 17, 197–225 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fitting, M.C.: Fixpoint semantics for logic programming - a survey. Theoretical Computer Science 21(3), 25–51 (2002)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fitting, M.: A Kripke-Kleene-semantics for general logic programs. Journal of Logic Programming 2, 295–312 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K. (eds.) Proc. of the 5th Int. Conf. on Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  12. 12.
    Ginsberg, M.L.: Multi-valued logics: a uniform approach to reasoning in artificial intelligence. Computational Intelligence 4, 265–316 (1988)CrossRefGoogle Scholar
  13. 13.
    Kunen, K.: Negation in logic programming. Journal of Logic Programming 4(4), 289–308 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Loyer, Y., Straccia, U.: Uncertainty and partial non-uniform assumptions in parametric deductive databases. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 271–282. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Loyer, Y., Straccia, U.: The approximate well-founded semantics for logic programs with uncertainty. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 541–550. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Loyer, Y., Straccia, U.: Default knowledge in logic programs with uncertainty. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 466–480. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Lukasiewicz, T.: Fixpoint characterizations for many-valued disjunctive logic programs with probabilistic semantics. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 336–350. Springer, Heidelberg (2001)Google Scholar
  18. 18.
    Ng, R., Subrahmanian, V.S.: Stable model semantics for probabilistic deductive databases. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1991. LNCS (LNAI), vol. 542, pp. 163–171. Springer, Heidelberg (1991)Google Scholar
  19. 19.
    Przymusinski, T.C.: Extended stable semantics for normal and disjunctive programs. In: Warren, D.H.D., Szeredi, P. (eds.) Proc. of the 7th Int. Conf. on Logic Programming, pp. 459–477. MIT Press, Cambridge (1990)Google Scholar
  20. 20.
    Przymusinski, T.C.: The well-founded semantics coincides with the three-valued stable semantics. Fundamenta Informaticae 13(4), 445–463 (1990)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J. (eds.) Logic and data bases, pp. 55–76. Plenum Press, New York (1978)Google Scholar
  22. 22.
    van Gelder, A., Ross, K.A., Schlimpf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Yann Loyer
    • 1
  • Umberto Straccia
    • 2
  1. 1.PRiSM (CNRS UMR 8144)Université de VersaillesFRANCE
  2. 2.I.S.T.I. – C.N.RPisaITALY

Personalised recommendations