A Geometric Approach to Parameterized Algorithms for Domination Problems on Planar Graphs

  • Henning Fernau
  • David Juedes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3153)


This paper revisits design and analysis techniques for fixed parameter algorithms for Planar Dominating Set and other problems on planar structures. As our main result, we use new geometric arguments concerning treewidth-based algorithms to show that determining whether a planar graph G has a dominating set of size k can be solved in \(O(2^{16.4715 \sqrt{k}}+ n^3)\) steps. This result improves on the best known treewidth-based algorithm by Kanj and Perkovič that runs in time \(O(2^{27\sqrt{k}}n)\). Our main result nearly matches the new branchwidth-based algorithm for Planar Dominating Set by Fomin and Thilikos that runs in time \(O(2^{15.13 \sqrt{k}}k +n^3)\). Algorithms for other problems on planar structures are explored. In particular, we show that Planar Red/Blue Dominating Set can be solved in time \(O(2^{24.551 \sqrt{k}}n)\). This leads to the main results, namely, that faster parameterized algorithms can be obtained for a variety of problems that can be described by planar boolean formulae. This gives the best-known parameterized algorithms for Planar Vertex Cover, Planar Edge Dominating Set, and Face Cover.


Planar Graph Geometric Approach Parameterized Algorithm Outerplanar Graph Geometric Argument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33, 461–493 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alber, J., Bodlaender, H.L., Fernau, H., Niedermeier, R.: Fixed-parameterized algorithms for planar dominating set and related problems. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 97–110. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Alber, J., Fan, H., Fellows, M., Fernau, H., Niedermeier, R.: Refined search tree technique for dominating set on planar graphs. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 111–122. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Alber, J., Fellows, M.R., Niedermeier, R.: Efficient data reduction for dominating set: A linear problem kernel for the planar case. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 150–159. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Cai, L., Fellows, M.R., Juedes, D., Rosamond, F.: On efficient polynomial-time approximation schemes for problems on planar structures (2001), Manuscript. Some of these results appear in [8]Google Scholar
  6. 6.
    Demaine, E.D., Hajiaghayi, M.T., Thilikos, D.: Exponential speedup of fixed-parameter algorithms on K3,3-minor-free or K5-minor-free graphs. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 262–273. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Downey, R., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Fellows, M.R.: Parameterized complexity: the main ideas, connections to heuristics and research frontiers. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 291–307. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Fomin, F.V., Thilikos, D.: Dominating sets in planar graphs: Branch-width and exponential speed-up. In: Proceedings of the 14th Annual Symposium on Discrete Algorithms SODA, pp. 168–177. ACM Press, New York (2003)Google Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: a guide to the theory of NP-completeness. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  11. 11.
    Kanj, I.A., Perkovič, L.: Improved parameterized algorithms for planar dominating set. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 399–410. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Khanna, S., Motwani, R.: Toward a syntactic characterization of PTAS. In: Proceedings of the 28th Annual Symposium on Theory of Computing STOC, pp. 329–337. ACM Press, New York (1996)Google Scholar
  13. 13.
    Kloks, T., Lee, C.M., Liu, J.: New algorithms for k-face cover, k-feedback vertex set, and k-disjoint cycles on plane and planar graphs. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 282–295. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Thorup, M.: Structural programs have small tree-width and good register allocation. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335, pp. 318–332. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Henning Fernau
    • 1
    • 2
  • David Juedes
    • 3
  1. 1.WSI für InformatikUniversität TübingenTübingenGermany
  2. 2.Department of Electrical Engineering and Computer ScienceThe University of NewcastleCallaghanAustralia
  3. 3.School of E.E & C.S.Ohio UniversityAthensU.S.A.

Personalised recommendations