Advertisement

On NC1 Boolean Circuit Composition of Non-interactive Perfect Zero-Knowledge

  • Alfredo De Santis
  • Giovanni Di Crescenzo
  • Giuseppe Persiano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3153)

Abstract

Non-Interactive Perfect Zero-Knowledge (NIPZK) and Perfect Zero-Knowledge (PZK) are the class of languages having a Perfect Zero-Knowledge proof system in the non-interactive and interactive model, respectively.

In this paper we present new techniques for Boolean Circuit Compositions of NIPZK and PZK, and significantly enlarge the class of known languages having such proofs. Our main result is that all NC1 circuit compositions over a certain class of languages (that includes for example quadratic residuosity languages) have NIPZK proofs. Previous results only applied to single threshold gates and certain CNF formulae.

We also extend the class of known languages in PZK by allowing compositions over random self-reducible languages with respect to polynomial-size monotone circuits with fan-out >1 and certain additional restrictions on the allowed gates. Previous results only applied to polynomial-size formulae (that is, circuits with fan-out =1).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Yung, M.: Certifying Cryptographic Tools: the case of Trapdoor Permutations. Journal of CryptologyGoogle Scholar
  2. 2.
    Ben-Or, M., Goldreich, O., Goldwasser, S., Hastad, J., Micali, S., Rogaway, P.: Everything Provable is Provable in Zero Knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 37–56. Springer, Heidelberg (1990)Google Scholar
  3. 3.
    Boyar, J., Friedl, K., Lund, C.: Practical Zero-Knowledge Proofs: Giving Hints and Using Deficiencies. Journal of Cryptology 4, 185–206 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-Interactive Zero-Knowledge. SIAM Journal of Computing 20(6), 1084–1118 (1991)zbMATHCrossRefGoogle Scholar
  5. 5.
    Blum, M., Feldman, P., Micali, S.: Non-Interactive Zero-Knowledge and Applications. In: Proc. of STOC 1988 (1988)Google Scholar
  6. 6.
    Boppana, R., Hastad, J., Zachos, S.: Does co-NP has Short Interactive Proofs? Inf. Proc. Lett. 25, 127–132 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Boyar, J., Peralta, R.: Short Discreet Proofs. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 131–142. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    De Santis, A., Di Crescenzo, G., Persiano, G.: Secret sharing and perfect zero-knowledge. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 73–84. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    De Santis, A., Di Crescenzo, G., Persiano, G.: The Knowledge Complexity of Quadratic Residuosity Languages. Theoretical Computer Science 132, 291–317 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M.: On Monotone Formula Closure of SZK. In: Proc. of FOCS 1994 (1994)Google Scholar
  11. 11.
    Feige, U., Fiat, A., Shamir, A.: Zero-Knowledge Proofs of Identity. Journal of CryptologyGoogle Scholar
  12. 12.
    Fortnow, L.: The Complexity of Perfect Zero-Knowledge. In: Proc. of STOC 1987 (1987)Google Scholar
  13. 13.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing but their Validity or All Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM 38(1), 691–729 (1991)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Goldreich, O., Oren, Y.: Definitions and Properties of Zero-Knowledge Proof Systems. Journal of Cryptology 7, 1–32 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof-Systems. SIAM J. on Computing 18(1) (1989)Google Scholar
  16. 16.
    Impagliazzo, R., Yung, M.: Direct Minimum Knowledge Computations. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 40–51. Springer, Heidelberg (1988)Google Scholar
  17. 17.
    Itoh, T., Ohta, Y., Shizuya, H.: A Language-Dependent Cryptographic Primitive. Journal of Cryptology 10(1), 37–50 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Gennaro, R., Micciancio, D., Rabin, T.: An efficient non-interactive statistical zero-knowledge proof system for quasi-safe prime products. In: Proc. of 5th ACM Conference on Computer and Communication Security - CCS 1998 (1998)Google Scholar
  19. 19.
    Micciancio, D., Vadhan, S.: Statistical zero-knowledge proofs with efficient provers: lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Sander, T., Young, A., Yung, M.: Non-Interactive Cryptocomputing for NC1. In: Proc. of FOCS 1999 (1999)Google Scholar
  21. 21.
    Tompa, M., Woll, H.: Random Self-Reducibility and Zero-Knowledge Interactive Proofs of Possession of Information. In: Proc. of FOCS 1987 (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alfredo De Santis
    • 1
  • Giovanni Di Crescenzo
    • 2
  • Giuseppe Persiano
    • 1
  1. 1.Dipartimento di Informatica ed ApplicazioniUniversità di SalernoBaronissiItaly
  2. 2.Telcordia TechnologiesPiscatawayUSA

Personalised recommendations