Skip to main content

Geodesic Active Regions Using Non-parametric Statistical Regional Description and Their Application to Aneurysm Segmentation from CTA

  • Conference paper
Medical Imaging and Augmented Reality (MIAR 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3150))

Included in the following conference series:

Abstract

The inclusion of statistical region-based information in the Geodesic Active Contours introduces robustness in the segmentation of images with weak or inhomogeneous gradient at edges. The estimation of the Probability Density Function (PDF) for each region, involves the definition of the features that characterize the image inside the different regions. PDFs are usually modelled from the intensity values using Gaussian Mixture Models. However, we argue that the use of up to second order information could provide better discrimination of the different regions than based on intensity only, as the local intensity manifold is more accurately represented. In this paper, we present a non parametric estimation technique for the PDFs of the underlying tissues present in medical images with application for the segmentation of brain aneurysms in CTA data with the Geodesic Active Regions model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aylward, S.R., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction, Medical Imaging. IEEE Transactions on 21(2), 61–75 (2002)

    Google Scholar 

  2. Dasarathy, B.: Nearest neighbor pattern classification techniques. IEEE Computer Society Press, Los Alamitos (1990)

    Google Scholar 

  3. Deschamps, T.: Curve and Shape Extraction with Minimal Path and Level-Sets techniques. Applications to 3D Medical Imaging, Ph.D. Thesis, University of Paris- Dauphine, France (December 2001)

    Google Scholar 

  4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, J. Wiley, Chichester (2001)

    Google Scholar 

  5. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)

    Google Scholar 

  6. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. data mining, inference and prediction. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  7. Hochmuth, A., Spetzger, U., Schumacher, M.: Comparison of three-dimensional rotational angiography with digital subtraction angiography in the assessment of ruptured cerebral aneurysms. AJNR Am J Neuroradiol 23(7), 1199–1205 (2002)

    Google Scholar 

  8. Holtzman-Gazit, M., Goldsher, D., Kimmel, R.: Hierarchical segmentation of thin structures in volumetric medical images. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 562–569. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y.: Model based detection of tubular structures in 3d images. Computer Vision and Image Understanding 80(2), 130–171 (2000)

    Article  MATH  Google Scholar 

  10. Kudo, M., Sklansky, J.: Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33, 25–41 (2000)

    Article  Google Scholar 

  11. Lorigo, L.M., Faugeras, O., Grimson, W.E.L., Keriven, R., Kikinis, R., Nabavi, A., Westin, C.F.: Codimension-two geodesic active contours for the segmentation of tubular structures. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, June 2000, vol. 1, pp. 444–451 (2000)

    Google Scholar 

  12. Paragios, N.: Geodesic active regions and level set methods: Contributions and applications in artificial vision, Ph.D. Thesis, University of Nice Sophia-Antipolis, France (2000)

    Google Scholar 

  13. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stats. 33, 1065–1976 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  14. Vapnik, V.N.: Statistical learning theory. J. Wiley, Chichester (1998)

    MATH  Google Scholar 

  15. White, P.M., Teasdale, E.M., Wardlaw, J.M., Easton, V.: Intracranial aneurysms: CT angiography and MR angiography for detection prospective blinded comparison in a large patient cohort. Radiology 219(3), 739–749 (2001)

    Google Scholar 

  16. Yim, P.J., Cebral, J.R., Mullick, R., Marcos, H.B., Choyke, P.L.: Vessel surface reconstruction with a tubular deformable model, Medical Imaging. IEEE Transactions on 20(12), 1411–1421 (2001)

    Google Scholar 

  17. Zhu, S.C., Yuille, A.: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation, Pattern Analysis and Machine Intelligence. IEEE Transactions on 18(9), 884–900 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hernandez, M., Frangi, A.F. (2004). Geodesic Active Regions Using Non-parametric Statistical Regional Description and Their Application to Aneurysm Segmentation from CTA. In: Yang, GZ., Jiang, TZ. (eds) Medical Imaging and Augmented Reality. MIAR 2004. Lecture Notes in Computer Science, vol 3150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28626-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28626-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22877-6

  • Online ISBN: 978-3-540-28626-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics