Skip to main content

Communication Between Undamaged Plants by Volatiles: the Role of Allelobiosis

  • Chapter

Abstract

Plant-plant signalling is discussed from a tritrophic perspective, with special reference to results from experiments with a model system consisting of barley, aphids and ladybirds. Experimental support for the following statements is discussed: (1) barley plants communicate via volatile substances and, in certain combinations of genotypes, this communication leads to changes in biomass allocation, (2) communication between barley plants of certain genotypes changes the pattern of host plant acceptance by the bird cherry-oat aphid, Rhopalosiphum padi, (3) odour stimuli from barley and common weeds affect the searching behaviour of the seven-spotted ladybird, Coccinella septempunctata. The results indicate that an active response of the barley plant to exposure to weed Cirsium arvense volatiles may be involved. The tritrophic effects of plant-plant communication in barley add a new dimension to the term allelopathy. Thus, we use the term allelobiosis to denote interactions in which exchange of plant chemicals has an informative value for the receiving plant, and the response of the receiving plant affects its growth strategy, and relations with herbivores and their natural enemies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aerts R, Boot RGA, van der Aart PJM (1991) The relation between above-and belowground biomass allocation patterns and competitive ability. Oecologia 87:551–559

    Article  Google Scholar 

  • Arimura GI, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima beans. Nature 406:512–514

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Shultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221:277–279

    Article  CAS  PubMed  Google Scholar 

  • Bruin J, Dicke M (2001) Chemical information transfer between wounded and unwounded plants: backing up the future. Biochem Syst Ecol 29:1103–1113

    Article  CAS  Google Scholar 

  • Chaerle L Van der Streaten 2000 Imaging techniques and the early detection of plant stress. Trends Plant Sci 5495–501

    Google Scholar 

  • Dicke M, van Loon JA (2000) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol Exp Appl 97:237–249

    Article  CAS  Google Scholar 

  • Dixon AFG (2000) Insect predator-prey dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Farmer EE (2001) Surface-to-air signals. Nature 411:854–856

    Article  PubMed  CAS  Google Scholar 

  • Fowler SV, Lawton JH (1985) Rapidly induced defenses and talking trees: the devil’s advocate position. Am Nat 126:181–195

    Article  Google Scholar 

  • Fujiwara M, Oku H, Shiraishi T (1987) Involvement of volatile substances in systemic resistance of barley against Erysiphe graminis f. sp. hordei induced by pruning of leaves. J Phytopathol 120:81–84

    Google Scholar 

  • Gersani M, Brown JS, O’Brien EE, Maina GM, Abramsky Z (2001) Tragedy of the commons as a result of root competition. J Ecol 89:660–669

    Article  Google Scholar 

  • Glinwood R, Ninkovic V, Pettersson J, Ahmed E (2004) Barley exposed to aerial allelopathy from thistles (Cirsium spp.) became less acceptable to aphids. Ecol Entomol 29:188–195

    Article  Google Scholar 

  • Glinwood R, Pettersson J, Ahmed E, Ninkovic V, Birkett M, Pickett J (2003) Change in acceptance of barley plants to aphids after exposure to allelochemicals from couch-grass (Elytrigia repens). J Chem Ecol 29:259–272

    Article  Google Scholar 

  • Grime JP (2001)Plant strategies, vegetation processes, and ecosystem properties. Wiley and Sons, Chichester

    Google Scholar 

  • Karban R, Baldwin IT, Baxter KJ, Laue G, Felton GW (2000) Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71

    Article  Google Scholar 

  • Kohli RK, Singh D (1991) Allelopathic impact of volatile components from Eucalyptus on crop plants. Biol Plant 33:475–483

    CAS  Google Scholar 

  • Li HH, Nishimura H, Hasegawa K, Mizutani J (1992) Allelopathy of Sasa cemua. J Chem Ecol 18:1785–1796

    CAS  Google Scholar 

  • Molisch H (1937) Der Einfluss einer Pflanze auf die andere Allelopathie. Fischer, Jena

    Google Scholar 

  • Muller CH, Muller WH, Haines BL (1964) Volatile growth inhibitors produced by shrubs. Science 143:471–473

    Article  CAS  PubMed  Google Scholar 

  • Ninkovic V (2003) Volatile communication between barley plants affects biomass allocation. J Exp Bot 54:1931–1939

    Article  PubMed  CAS  Google Scholar 

  • Ninkovic V, Al Abassi S, Pettersson J (2001) The influence of aphid-induced plant volatiles on ladybird beetle searching behaviour. Biol Control 21:191–195

    Article  Google Scholar 

  • Ninkovic V, Olsson U, Pettersson J (2002) Mixing barley cultivars affects aphid host plant acceptance in field experiments. Entomol Exp Appl 102:177–182

    Article  Google Scholar 

  • Ninkovic V, Pettersson J (2003) Searching behaviour of sevenspotted ladybird, Coccinella septempunctata — effects of plant-plant odour interaction. Oikos 100:65–70

    Article  Google Scholar 

  • Pettersson J, Ninkovic V, Ahmed E (1999) Volatiles from different barley cultivars affect aphid acceptance of neighbouring plants. Acta Agric Scand B 49:152–157

    CAS  Google Scholar 

  • Pettersson J, Ninkovic V, Glinwood R (2003) In: Plant activation of barley by intercropped conspecifics and weeds: allelobiosis, vol 2. BCPC Crop Science and Technology, pp 1135–1144

    Google Scholar 

  • Pettersson J, Quiroz A, Fahad AE (1996) Aphid antixenosis mediated by volatiles in cereals. Acta Agric Scand B 46:135–140

    Google Scholar 

  • Pickett JA, Rasmussen HB, Woodcock CM, Matthes M, Napier JA (2001) Plant stress signalling: understanding and exploiting plant-plant interactions. Biochem Soc Trans 31:123–127

    Article  Google Scholar 

  • Pickett J, Wadhams LJ, Woodcock CM, Hardy J (1992) The chemical ecology of aphids. Annu Rev Entomol 37:67–90

    Article  CAS  Google Scholar 

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants different levels of light, CO2 nutrients and water: a quantitative review. Aust J Plant Physiol 27:595–607

    Article  CAS  Google Scholar 

  • Preston CA, Laue G, Baldwin IT (2004) Plant-plant signalling: application of trans or cis methyl jasmonate equivalent to sagebrush releases does not elicit direct defenses in native tobacco. J Chem Ecol 30:2193–2213

    Article  PubMed  CAS  Google Scholar 

  • Ray H, Hastings PJ (1992) Variation within flax (Linum usitat issimum) and barley (Hordeum vulgare) in response to allelopathic chemicals. Theor Appl Genet 84:460–465

    Article  CAS  Google Scholar 

  • Rhoades DF (1983) Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willows. In: Hedin PA (ed) Plant resistance to insects, vol 4. American Chemical Society, Washington, DC, pp 55–68

    Google Scholar 

  • Rice EL (1984) Allelopathy. Academic, New York

    Google Scholar 

  • Van der Werf A (1996) Growth analysis and photoassimilate partitioning, vol 1. In: Zamski E, Schaffer AA (eds) Photoassimilate distribution implants and crops: source-sink relationships. Dekker, NewYork, pp 1–20

    Google Scholar 

  • Weaver TW, Klovich D (1977) Allelopathic effects of volatile substances from Artemisia tridentata Nutt. Am Midl Nat 97:508–512

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ninkovic, V., Glinwood, R., Pettersson, J. (2006). Communication Between Undamaged Plants by Volatiles: the Role of Allelobiosis. In: Baluška, F., Mancuso, S., Volkmann, D. (eds) Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28516-8_28

Download citation

Publish with us

Policies and ethics