Skip to main content

Electrophysiology and Phototropism

  • Chapter
Communication in Plants

Abstract

Plants continually gather information about their environment. The conduction of bioelectrochemical excitation is a fundamental property of living organisms. Cells, tissues, and organs transmit electrochemical signals over short and long distances. The sensitive membranes in phloem cells facilitate the passage of electrical excitations in the form of action potentials. We have created a unique electrophysiological workstation that can effectively register this electrical activity in real time. It allows basic properties of electrical communication in green plants to be established. Our workstation has very high input impedance and a resolution of 0.01 ms. Excitation waves in higher plants are possible mechanisms for intercellular and intracellular communication in the presence of environmental changes. Ionic channels, as natural nanodevices, control the plasma membrane potential and the movement of ions across membranes regulating various biological functions. Some voltage-gated ion channels work as plasma membrane nanopotentiostats. Blockers of ionic channels, such as tetraethylammonium chloride and ZnCl2, stop the propagation of action potentials in soybean induced by blue light and inhibit phototropism in soybean plants. Voltage-gated ionic channels control the plasma membrane potential and the movement of ions across membranes regulating various biological functions. These biological nanodevices play vital roles in signal transduction in higher plants. Tetraethylammonium chloride and ZnCl2 block K+ and Ca2+ ionic channels. These blockers inhibit the propagation of action potentials induced by blue light, and inhibit phototropism in soybean plants. The irradiation of soybean plants at 450 ± 50 nm induces action potentials with duration times of about 1 ms and amplitudes around 60 mV. The role of the electrified interface of the plasma membrane in signal transduction is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166

    Article  PubMed  CAS  Google Scholar 

  • Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998) Cryptochrome blue-light photoreceptors implicated in phototropism. Nature 392:720–723

    Article  PubMed  CAS  Google Scholar 

  • Babourina O, Newman I, Shabala S (2002) Blue light-induced kinetics of H+ and Ca2+ fluxes in etiolated wild-type and phototropin-mutant Arabidopsis seedlings. Proc Natl Acad Sci USA 99:2433–2438

    Article  PubMed  CAS  Google Scholar 

  • Bertholon M (1783) De l’electricite des vegetaux: ouvrage dans lequel on traite de l’electricite de l’atmosphere sur les plantes, de ses effets sur l’economie des vegetaux, de leurs vertus medicaux. Didotjeune, Paris

    Google Scholar 

  • Bose JC (1925) Transmission of stimuli in plants. Nature 115:457–457

    Google Scholar 

  • Brown CL, Mbyirurukira G, Osei AJ, Volkov AG (2005) Effects of ion channel blockers on signal transduction in green plants. Biophys J 88:430a–430a

    Google Scholar 

  • Casal JJ (2000) Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem Photobiol 71:1–11

    Article  PubMed  CAS  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1888) The power of movement in plants. Appleton, New York

    Google Scholar 

  • Davies E (1983) Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses. Plant Cell Environ 10:623–631

    Article  Google Scholar 

  • Eisinger W, Swartz TE, Bogomolni RA, Taiz L (2000) The ultraviolet action spectrum for stomatal opening in broad bean. Plant Physiol 122:99–105

    Article  PubMed  CAS  Google Scholar 

  • Folta KM, Spalding EP (2001) Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyls growth inhibition. Plant J 26:471–478

    Article  PubMed  CAS  Google Scholar 

  • Frechilla S, Talbott LD, Bogomolni RA, Zeiger E (2000) Reversal of blue light-stimulated stomatal opening by green light. Plant Physiol 122:99–106

    Article  Google Scholar 

  • Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469

    Article  Google Scholar 

  • Fromm J, Spanswick R (1993) Characteristics of action potentials in willow (Salix viminalis L.). J Exp Bot 44: 1119–1125

    Article  Google Scholar 

  • Goldsworthy A (1983) The evolution of plant action potentials. J Theor Biol 103:645–648

    Article  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland, MA

    Google Scholar 

  • Ksenzhek OS, Volkov AG (1998) Plant energetics. Academic, San Diego

    Google Scholar 

  • Labady A, Thomas D’J, Shvetsova T, Volkov AG (2002) Plant electrophysiology: excitation waves and effects of CCCP on electrical signaling in soybean. Bioelectrochem 57:47–53

    Article  CAS  Google Scholar 

  • Lasceve G, Leymarie J, Olney MA, Liscum E, Christie M, Vavasseur A, Briggs WR (1999) Arabidopsis contains at least four independent blue-light-activated signal transduction pathways. Plant Physiol 120:605–614

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Ahmad M, Cashmore AR (1996) Arabidopsis cryptochrome is a soluble protein mediating blue light-dependent regulation of plant growth and development. Plant J 10:893–902

    Article  PubMed  CAS  Google Scholar 

  • Mwesigwa J, Collins DJ, Volkov AG (2000) Electrochemical signaling in green plants: effects of 2,4-dinitrophenol on resting and action potentials in soybean. Bioelectrochem 51:201–205

    Article  CAS  Google Scholar 

  • Quail PH (1997) An emerging molecular map of the phytochromes. Plant Cell Environ 20:657–665

    Article  CAS  Google Scholar 

  • Reymond P, Short TW, Briggs WR (1992) Blue light activates a specific protein kinase in higher plants. Plant Physiol 100:655–661

    Article  PubMed  CAS  Google Scholar 

  • Short TW, Briggs WR (1994) The transduction of blue light signals in higher plants. Annu Rev Plant Physiol Plant Mol Biol 45:143–171

    Article  CAS  Google Scholar 

  • Shvetsova T, Mwesigwa J, Volkov AG (2001) Plant electrophysiology: FCCP induces fast electrical signaling in soybean. Plant Sci 161:901–909

    Article  CAS  Google Scholar 

  • Shvetsova T, Mwesigwa J, Labady A, Kelly S, Thomas D’J, Lewis K, Volkov AG (2002) Soybean electrophysiology: effects of acid rain. Plant Sci 162:723–731

    Article  CAS  Google Scholar 

  • Sinukhin AM, Britikov EA (1967) Action potentials in the reproductive system of plant. Nature 215:1278–1280

    Article  Google Scholar 

  • Smith H (2000) Phytochromes and light signal perception by plants — an emerging synthesis. Nature 407:585–591

    Article  PubMed  CAS  Google Scholar 

  • Swartz TE, Corchnoy SB, Christie JM, Lewis JW, Szundi I, Briggs WR, Bogomolni RA (2001) The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J Biol Chem 276:36493–36500

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG (2000) Green plants: electrochemical interfaces. J Electroanal Chem 483: 150–156

    Article  CAS  Google Scholar 

  • Volkov AG (2002) Biocatalysis: Electrochemical mechanisms of respiration and photosynthesis. In: Volkov AG (ed) Interfacial catalysis. Dekker, New York, pp 1–22

    Google Scholar 

  • Volkov AG, Collins DJ, Mwesigwa J (2000) Plant electrophysiology: pentachlorophenol induces fast action potentials in soybean. Plant Sci 153:185–190

    Article  PubMed  CAS  Google Scholar 

  • Volkov AG, Deamer DW, Tanelian DL, Markin VS (1998) Liquid interfaces in chemistry and biology. Wiley, New York

    Google Scholar 

  • Volkov AG, Dunkley TC, Labady AJ, Ruff D, Morgan SA (2004) Electrochemical signaling in green plants induced by photosensory systems: molecular recognition of the direction of light. In: Bruckner-Lea C, Hunter G, Miura K, Vanysek P, Egashira M, Mizutani F (eds) Chemical sensors VI: chemical and biological sensors and analytical methods. The Electrochemical Society, Pennington, pp 344–353

    Google Scholar 

  • Volkov AG, Dunkley TC, Labady AJ, Brown C (2005) Phototropism and electrified interfaces in green plants. Electrochim Acta 50:4241–4247

    Article  CAS  Google Scholar 

  • Volkov AG, Dunkley TC, Morgan SA, Ruff D II, Boyce Y, Labady AJ (2004) Bioelectrochemical signaling in green plants induced by photosensory systems. Bioelectrochemisty 63:91–94

    Article  CAS  Google Scholar 

  • Volkov AG, Haack RA (1995) Insect induced bioelectrochemical signals in potato plants. Bioelectrochem Bioenerg 35:55–60

    Article  Google Scholar 

  • Volkov AG, Jovanov E (2002) Electrical signaling in green plants: action potentials. In: Jan J, Kozumplik J, Provaznik J (eds) Analysis of biomedical signals and images. Vutum, Brno, pp 36–38

    Google Scholar 

  • Volkov AG, Labady A, Thomas D’J, Shvetsova T (2001) Green plants as environmental biosensors: electrochemical effects of carbonyl cyanide 3-chlorophenylhydrazone on soybean. Anal Sci 17Suppl:i359–i362

    Google Scholar 

  • Volkov AG, Mwesigwa J (2001a) Interfacial electrical phenomena in green plants: action potentials. In: Volkov AG (ed.) Liquid interfaces in chemical, biological, and pharmaceutical applications. Dekker, New York, pp 649–681

    Google Scholar 

  • Volkov AG, Mwesigwa J (2001b) Electrochemistry of soybean: effects of uncouplers, pollutants, and pesticides. J Electroanal Chem 496:153–157

    Article  CAS  Google Scholar 

  • Volkov AG, Mwesigwa J, Jovanov E, Labady A, Thomas DJ, Lewis K, Shvetsova T (2002) Acid rain induces action potentials in green plants. In: Cerutti S, Akay M, Mainardi LT, Sato S, Zywietz C (eds) Proceedings of the IV international workshop on biosignal interpretation BSI2002. Polytechnic University Press, Milan, pp 513–517

    Google Scholar 

  • Volkov AG, Mwesigwa J, Labady A, Kelly S, Lewis K, Shvetsova T (2002) Soybean electrophysiology: Effects of acid rain. Plant Sci 162:723–731

    Article  Google Scholar 

  • Volkov AG, Mwesigwa J, Shvetsova T (2001) Soybean as an environmental biosensor: Action potentials and excitation waves. In: Butler M, Vanysek P, Yamazoe N (eds) Chemical and biological sensors and analytical methods II. The Electrochemical Society, Pennington, pp 229–238

    Google Scholar 

  • Volkov AG, Shvetsova T, Markin VS (2002) Waves of excitation and action potentials in green plants. Biophys J 82:218a

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Volkov, A.G. (2006). Electrophysiology and Phototropism. In: Baluška, F., Mancuso, S., Volkmann, D. (eds) Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28516-8_24

Download citation

Publish with us

Policies and ethics