Skip to main content

Physiological Roles of Nonselective Cation Channels in the Plasma Membrane of Higher Plants

  • Chapter
Communication in Plants

Abstract

Nonselective cation channels (NSCC) in the plasma membrane of higher plants form a large and diverse group of plant cation channels which are permeable for K+, Na+ and Ca2+. They include four classes: (1) constitutive NSCC; (2) NSCC activated by reactive oxygen species (ROS); (3) ligand-activated NSCC; and (4) mechanosensitive NSCC. Our understanding of physiological functions of NSCC has significantly progressed in the last few years. NSCC were demonstrated to be involved in nutritional uptake of K+, NH +4 , Ca2+, Mg2+, micronutrients and trace elements, toxic Na+ influx, in ROS-, amino acid, purine- and cyclic nucleotide induced signalling, growth and development. Here, physiological roles of plant NSCC are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amtmann A, Laurie S, Leigh RA, Sanders D (1997) Multiple inward channels provide flexibility on Na+/K+ discrimination at the plasma membrane of barley suspension culture cells. J Exp Bot 48:481–497

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    Article  PubMed  CAS  Google Scholar 

  • Balague C, Lin BQ, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15:365–379

    Article  PubMed  CAS  Google Scholar 

  • Bergmann W (1992) Nutritional disorders of plants — development, visual and analytical diagnosis. Fisher, Jena

    Google Scholar 

  • Bertl A, Reid JD, Sentenac H, Slayman CL (1997) Functional comparison of plant inward-rectifier channels expressed in yeast. J Exp Bot 48:405–413

    CAS  Google Scholar 

  • Broadley MR, Escobar-Gutierrez AJ, Bowen HC, Willey NJ, White PJ (2001) Influx and accumulation of Cs+ by the akt1 mutant of Arabidopsis thaliana (L.) Heynh. Lacking a dominant K+ transport system. J Exp Bot 52:839–844

    PubMed  CAS  Google Scholar 

  • Cerana R Colombo R (1992) K+ and Cl−− conductance of Arabidopsis thaliana plasma membrane at depolarised voltages. Bot Acta 105:273–277

    Google Scholar 

  • Chan CWM, Schorrak LM, Smith RK, Bent AF, Sussman MR (2003) A cyclic nucleotidegated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiol 132:728–731

    Article  PubMed  CAS  Google Scholar 

  • Chiu JC, Brenner ED, DeSalle R, Nitabach MN, Holmes TC, Coruzzi GM (2002) Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Mol Biol Evol 19:1066–1082

    PubMed  CAS  Google Scholar 

  • Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK, Bent AF (2000) The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA 97:9323–9328

    Article  PubMed  CAS  Google Scholar 

  • Davenport R (2002) Glutamate receptors in plants. Ann Bot 90:549–557

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Bowen HC, Maathuis FJM, Shabala SN, Tester MA, White PJ, Davies JM (2002) Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. Plant J 32:799–808

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Davenport RJ, Tester MA (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53:67–107

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Essah PA, Tester M (2004) Glutamate activates cation currents in the plasma membrane of Arabidopsis root cells. Planta 219:167–175

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Nichols C, Oliynyk M, Glover B, Davies JM (2003) Is extracellular ATP a signaling agent in plants? Plant Physiol 133:456–461

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+ and K+-permeable channels in plant root cells. J Cell Sci 116:81–88

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Tester MA (2002) Sodium fluxes through nonselective cation channels in the plant plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128:379–387

    Article  PubMed  CAS  Google Scholar 

  • Dennison KL, Spalding EP (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol 124:1511–1514

    Article  PubMed  CAS  Google Scholar 

  • Ding JP, Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3:83–110

    Article  CAS  Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    PubMed  CAS  Google Scholar 

  • Dubos C, Huggins D, Grant GH, Knight MR, Campbell MM (2003) A role for glycine in the gating of plant NMDA-like receptors. Plant J 35:800–810

    Article  PubMed  CAS  Google Scholar 

  • Elzenga JTM, van Volkenburgh E. (1994) Characterization of ion channels in the plasma membrane of epidermal cells of expanding pea (Pisum sativum arg) leaves. J Membr Biol 137:227–235

    PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Fry SC, Miller JG, Dumville JC (2002) A proposed role for copper ions in cell wall loosening. Plant Soil 247:57–67

    Article  CAS  Google Scholar 

  • Gelli A, Blumwald E (1997) Hyperpolarization-activated Ca2+-permeable channels in the plasma membrane of tomato cells. J Membr Biol 155:35–45

    Article  PubMed  CAS  Google Scholar 

  • Gilliham M, Sullivan W, Tester M, Tyerman SD (2004) Simultaneous flux and current measurements from plant protoplasts. Abstracts of the 13th international workshop on plant membrane biology, Montpellier, P15–16, p 282

    Google Scholar 

  • Hescheler J, Schultz G (1993) Nonselective cation channels: physiological and pharmacological modulations of channel activity. EXS 66:27–43

    PubMed  CAS  Google Scholar 

  • Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921

    Article  PubMed  CAS  Google Scholar 

  • Jeter CR, Tang WQ, Henaff E, Butterfield T, Roux SJ (2004) Evidence of a novel cell signaling role for extracellular adenosine triphosphates and diphosphates in Arabidopsis. Plant Cell 16:2652–2664

    Article  PubMed  CAS  Google Scholar 

  • Jurkowski GI, Smith RK, Yu IC, Ham JH, Sharma SB, Klessig DF, Fengler KA, Bent AF (2004) Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the “defense, no death” phenotype. Mol Plant Microbe Interact 17:511–520

    PubMed  CAS  Google Scholar 

  • Kang JM, Mehta S, Turano FJ (2004) The putative glutamate receptor 1.1 (AtGLR1.1) in Arabidopsis thaliana regulates abscisic acid biosynthesis and signaling to control development and water loss. Plant Cell Physiol 45:1380–1389

    Article  PubMed  CAS  Google Scholar 

  • Kang JM, Turano FJ (2003) The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6872–6877

    Article  PubMed  CAS  Google Scholar 

  • Kiegle E, Gilliham M, Haseloff J, Tester M (2000) Hyperpolarisation-activated calcium currents found only in cells from the elongation zone of Arabidopsis thaliana roots. Plant J 21:225–229

    Article  PubMed  CAS  Google Scholar 

  • Kim SA, Kwak JM, Jae SK, Wang MH, Nam HG (2001) Overexpression of the AtGluR2 gene encoding an arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol 42:74–84

    Article  PubMed  CAS  Google Scholar 

  • Kronzucker HJ, Britto DT, Davenport RJ, Tester M (2001) Ammonium toxicity and the real cost of transport. Trends Plant Sci 6:335–337

    Article  PubMed  CAS  Google Scholar 

  • Lacombe B, Becker D, Hedrich R, DeSalle R, Hollmann M, Kwak JM, Schroeder JI, Le Novere N, Nam HG, Spalding EP, Tester M, Turano FJ, Chiu J, Coruzzi G (2001) The identity of plant glutamate receptors. Science 292:1486–1487

    Article  PubMed  CAS  Google Scholar 

  • Lam HM, Chiu J, Hsieh MH, Meisel L, Oliveira IC, Shin M, Coruzzi G (1998) Glutamate-receptor genes in plants. Nature 396:125–126

    Article  PubMed  CAS  Google Scholar 

  • Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA (2002) Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol 128:400–410

    Article  PubMed  CAS  Google Scholar 

  • Leng Q, Mercier RW, Yao WZ, Berkowitz GA (1999) Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol 121:753–761

    Article  PubMed  CAS  Google Scholar 

  • Lemtiri-Chlieh F, Berkowitz GA (2004) Cyclic adenosine monophosphate regulates calcium channels in the plasma membrane of Arabidopsis leaf guard and mesophyll cells. J Biol Chem 279:35306–35312

    Article  PubMed  CAS  Google Scholar 

  • Lew RR, Dearnaley JDW (2000) Extracellular nucleotide effects on the electrical properties of growing Arabidopsis thaliana root hairs. Plant Sci 153:1–6

    Article  CAS  Google Scholar 

  • Lohaus G, Heldt H-W (1997) Assimilation of gaseous ammonia and the transport of its products in barley and spinach leaves. J Exp Bot 48:1779–1786

    CAS  Google Scholar 

  • Lohaus G, Winter H, Riens B, Heldt H-W (1995) Further studies of the phloem loading process in leaves of barley and spinach — the comparison of metabolite concentrations in the apoplastic compartment with those in the cytosolic compartment and in the sieve tubes. Bot Acta 108:270–275

    CAS  Google Scholar 

  • Maathuis FJM, Sanders D (2001) Sodium uptake in arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharm Rev 50:413–492

    PubMed  CAS  Google Scholar 

  • Reid R, Liu JH (2004) Measurement of trace metal influx in plants: a case study with Co. Funct Plant Biol 31:941–947

    Article  CAS  Google Scholar 

  • Roberts DM, Tyerman SD (2002) Voltage-dependent cation channels permeable to NH +4 , K+, and Ca2+ in the symbiosome membrane of the model legume Lotus japonicus. Plant Physiol 128:370–378

    Article  PubMed  CAS  Google Scholar 

  • Roberts SK, Tester M (1997) Patch clamp study of Na+ transport in maize roots. J Exp Bot 48:431–440

    Article  CAS  Google Scholar 

  • Roberts SK, Tester M (1997) Permeation of Ca2+ and monovalent cations through an outwardly rectifying channel in maize root stelar cells. J Exp Bot 48:839–846

    Article  CAS  Google Scholar 

  • Romano LA, Miedema H, Assmann SM (1998) Ca2+-permeable, outwardly-rectifying K+ channels in mesophyll cells of Arabidopsis thaliana. Plant Cell Physiol 39:1133–1144

    PubMed  CAS  Google Scholar 

  • Rubio F, Flores P, Navarro JM, Martinez V (2003) Effects of Ca2+, K+ and cGMP on Na+ uptake in pepper plants. Plant Sci 165:1043–1049

    Article  CAS  Google Scholar 

  • Stoeckel H, Takeda K (1989) Calcium-activated, voltage-dependent, non-selective cation currents in endosperm plasma membrane from higher plants. Proc R Soc Lond Ser B 237:213–231

    Article  Google Scholar 

  • Sunkar R, Kaplan B, Bouche N, Arazi T, Dolev D, Talke IN, Maathuis FJM, Sanders D, Bouchez D, Fromm H (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J 24:533–542

    Article  PubMed  CAS  Google Scholar 

  • Talke IN, Blaudez D, Maathuis FJM, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8: 286–293

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  • Thion L, Mazars C, Thuleau P, Graziana A, Rossignol M, Moreau M, Ranjeva R (1996) Activation of plasma membrane voltage-dependent calcium-permeable channels by disruption of microtubules in carrot cells. FEBS Lett 393:13–18

    Article  PubMed  CAS  Google Scholar 

  • Thomas C, Sun Y, Naus K, Lloyd A, Roux S (1999) Apyrase functions in plant phosphate nutrition and mobilizes phosphate from extracellular ATP. Plant Physiol 119:543–551

    Article  PubMed  CAS  Google Scholar 

  • Thuleau P, Ward JM, Ranjeva R, Schroeder JI (1994) Voltage-dependent calcium-permeable channels in the plasma membrane of a high plant cell. EMBO J 13:2970–2975

    PubMed  CAS  Google Scholar 

  • Turano FJ, Muhitch MJ, Felker FC, McMahon MB (2002) The putative glutamate receptor 3.2 from Arabidopsis thaliana (AtGLR3.2) is an integral membrane peptide that accumulates in rapidly growing tissues and persists in vascular-associated tissues. Plant Sci 163:43–51

    Google Scholar 

  • Tyerman SD, Skerrett M, Garrill A, Findlay GP, Leigh RA (1997) Pathways for the permeation of Na+ and Cl into protoplasts derived from the cortex of wheat roots. J Exp Bot 48:459–480

    CAS  Google Scholar 

  • Véry A-A, Davies JM (2000) Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proc Natl Acad Sci USA 97:9801–9806

    Article  PubMed  Google Scholar 

  • Véry A-A, Robinson MF, Mansfield TA, Sanders D (1998) Guard cell cation channels are involved in Na+-induced stomatal closure in a halophyte. Plant J 14:509–521

    Article  Google Scholar 

  • Véry A-A, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575–603

    Article  PubMed  Google Scholar 

  • Welch RM (1995) Micronutrient nutrition of higher plants. Crit Rev Plant Sci 14:49–82

    CAS  Google Scholar 

  • White PJ, Broadley MR (2000) Mechanisms of caesium uptake by plants. New Phytol 147:241–256

    Article  CAS  Google Scholar 

  • White PJ, Bowen HC, Demidchik V, Nichols C, Davies JM (2002) Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochim Biophys Acta Rev Biomembr 1564:299–309

    Article  CAS  Google Scholar 

  • White PJ, Lemtiri-Chlieh F (1995) Potassium currents across the plasma membrane of protoplasts derived from rye roots: a patch-clamp study. J Exp Bot 46:497–511

    Article  CAS  Google Scholar 

  • Zhang WH, Skerrett M, Walker NA, Patrick JW, Tyerman SD (2002) Nonselective currents and channels in plasma membranes of protoplasts from coats of developing seeds of bean. Plant Physiol 128:388–399

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demidchik, V. (2006). Physiological Roles of Nonselective Cation Channels in the Plasma Membrane of Higher Plants. In: Baluška, F., Mancuso, S., Volkmann, D. (eds) Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28516-8_16

Download citation

Publish with us

Policies and ethics