Skip to main content

Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes

  • Conference paper
Reactive Flows, Diffusion and Transport
  • 1587 Accesses

Summary

Three levels of modeling, microscopic, mesoscopic and macroscopic are discussed for the CO oxidation on low-index platinum single crystal surfaces. The introduced models on the microscopic and mesoscopic level are stochastic while the model on the macroscopic level is deterministic. It can be derived rigorously for low-pressure conditions from the microscopic model, which is characterized as a moderately interacting many-particle system, in the limit as the particle number tends to infinity. Also the mesoscopic model is given by a many-particle system. However, the particles move on a lattice, such that in contrast to the microscopic model the spatial resolution is reduced. The derivation of deterministic limit equations is in correspon-dence with the successful description of experiments under low-pressure conditions by deterministic reaction-diffusion equations while for intermediate pressures phenomena of stochastic origin can be observed in experiments. The models include a new approach to the platinum phase transition, which allows for a unification of existing models for Pt(100) and Pt(110). The rich nonlinear dynamical behavior of the macroscopic reaction kinetics is investigated and shows good agreement with low pressure experiments. Furthermore, for intermediate pressures, noise-induced pat-tern formation, which has not been captured by earlier models, can be reproduced in stochastic simulations with the mesoscopic model.

This work has been supported by the German Research Foundation (DFG) through SFB 359 (Project B3) at the University of Heidelberg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.F.S. Andrade, G. Dewel, and P. Borckmans. Modelling of the kinetic oscillations in the CO oxidation on Pt(100). J. Ghem. Phys., 91:2675–2682, 1989.

    Google Scholar 

  2. M. Bär, C. Zülicke, M. Eiswirth, and G. Ertl. Theoretical modeling of spatiotemporal self-organization in a surface catalyzed reaction exhibiting bistable kinetics. Journal of Chemical Physics, 96:8595–8604, 1992.

    Article  Google Scholar 

  3. L. Breiman. Probability. Addison-Wesley, 1968.

    Google Scholar 

  4. J. Cisternas, P. Holmes, I. G. Kevrekidis, and X. Li. CO oxidation on thin Pt crystals: Temperature slaving and the derivation of lumped models. Journal of Chemical Physics, 118(7):3312–3328, 2003.

    Article  Google Scholar 

  5. A. De Masi and E. Presutti. Mathematical methods for hydrodynamic limits. Lecture Notes in Mathematics, 1501. Springer-Verlag, 1991.

    Google Scholar 

  6. E. Doedel, A.R. Champneys, T.F. Fairgrieve, Y.A. Kusnetsov, B. Sandstede, and X. Wang. AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations. http://ftp.cs.concordia.ca/pub/doedel/auto.

    Google Scholar 

  7. R. Durrett. Probability: Theory and Examples. Duxbury Press, Belmont, 1996.

    Google Scholar 

  8. M. Eiswirth, M. Bär, and H.H. Rotermund. Spatiotemporal selforganization on isothermal catalysts. Physica D, 84:40–57, 1995.

    Article  Google Scholar 

  9. M. Eiswirth and G. Ertl. Kinetic oscillations in the catalytic oxidation of CO on Pt(110). Surf. Sci., 90:177, 1986.

    Google Scholar 

  10. M. Eiswirth and G. Ertl. Pattern formation on Catalytic Surfaces. In R. Kapral and K. Showalter, editors, Chemical Waves and Patterns, page 447. Kluwer, Dordrecht, 1995.

    Google Scholar 

  11. M. Eiswirth, K. Krischer, and G. Ertl. Transition to chaos in an oscillating surface reaction. Surfacce Science, 202(3):565–591, 1988.

    Article  Google Scholar 

  12. Eiswirth, M. Phänomene der Selbstorganisation bei der Oxidation von CO an Pt(110). Dissertation, Ludwig-Maximilians-Universitat München, 1987.

    Google Scholar 

  13. G. Ertl. Reaktionen an Festkörper-Oberflachen. Berichte der Bunsengesellschaft, 98:1413–1420, 1994.

    Google Scholar 

  14. Ethier, S.N., Kurtz, T.G. Markov Processes: Characterization and Convergence. Addison-Wesley, 1986.

    Google Scholar 

  15. C.W. Gardiner. Handbook of Stochastic Methods. Springer-Verlag, 1985.

    Google Scholar 

  16. D. Gillespie. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25):2340–2361, 1977.

    Article  Google Scholar 

  17. D. T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems. The Journal of Physical Chemistry, 81(25):2340–2361, 1977.

    Article  Google Scholar 

  18. S. Großkinsky, C. Klingenberg, and K. Oelschläger. A rigorous derivation of Smoluchowski’s equation in the moderate limit. Stochastic Anal. Appl., 22(1):113–141, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Guckenheimer. Multiple Bifurcation Problems for Chemical Reactors. Physica D, 20(1):1–20, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  20. Flavius Guias. Convergence properties of a stochastic model for coagulation-fragmentation processes with diffusion. Stochastic Anal. Appl., 19(2):245–278, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Haken. Statistical physics of bifurcation, spatial structures, and fluctuations of chemical reactions. Zeitschrift für Physik B, 20:413–420, 1975.

    Google Scholar 

  22. H. Haken. Advanced Synergetics. Springer Series in Synergetics. Springer-Verlag, Heidelberg, Berlin, New York, 1983.

    MATH  Google Scholar 

  23. H. Haken. Synergetics, An Introduction. Springer Series in Synergetics. Springer-Verlag, Heidelberg, Berlin, New York, 1983.

    MATH  Google Scholar 

  24. J. Hale and H. Koçak. Dynamics and Bifurcations. Springer-Verlag, Heidelberg, Berlin, New York, 1991.

    MATH  Google Scholar 

  25. J. Honerkamp. Stochastic Dynamical Systems. VCH, 1994.

    Google Scholar 

  26. A. Hopkinson, J.M. Bradley, X.-C. Guo, and D.A. King. Nonlinear Island Growth Dynamics in Adsorbate-Induced Restructuring of Quasihexagonal Reconstructed Pt(100) by CO. Phys. Rev. Letters, 71(10):1597–1600, 1993.

    Article  Google Scholar 

  27. R. Imbihl. Temporal and spatial patterns in catalytic reactions on single crystal surfaces. Heterogeneous Chemistry Reviews, 1:125, 1994.

    Google Scholar 

  28. R. Imbihl, M.P. Cox, G. Ertl, H. Müller, and W. Brenig. Kinetic Oscillations in the Catalytic CO Oxidation on Pt(100): Theory. J. Chem. Phys., 83(4):1578–1587, 1985.

    Article  Google Scholar 

  29. R. Imbihl and G. Ertl. Osicallatory kinetics in heterogeneous catalysis. Chemical Reviews, 95(3):697–733, 1995.

    Article  Google Scholar 

  30. I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. Springer-Verlag, Heidelberg, Berlin, New York, 1991.

    MATH  Google Scholar 

  31. Claude Kipnis and Claudio Landim. Scaling limits of interacting particle systems. Springer-Verlag, Heidelberg, Berlin, New York, 1999.

    MATH  Google Scholar 

  32. P. Kotelenez. Law of large numbers and central limit theorem for linear chemical reactions with diffusion. The Annals of Probability, 14(1):173–193, 1986.

    MATH  MathSciNet  Google Scholar 

  33. P. Kotelenez. High density limit theorems for nonlinear chemical reactions with diffusion. Probability Theory and Related Fields, 78:11–37, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  34. K. Krischer, M. Eiswirth, and G. Ertl. Oscillatory CO oxidation on Pt(110): Modeling of temporal self-organization. Journal of Chemical Physics, 96(12):9161–9172, 1992.

    Article  Google Scholar 

  35. Kurtz, T.G. Approximation of Population Processes. Society for Industrial and Applied Mathematics, 1981.

    Google Scholar 

  36. S. Méléard. Asymptotic behaviour of some interacting particle systems-McKean-Vlasov and Boltzmann models. In D. Talay and L. Tubaro, editors, Probabilistic Models for Nonlinear Partial Differential Equations, Lecture Notes in Mathematics 1627, pages 42–95. Springer-Verlag, 1995.

    Google Scholar 

  37. K. Oelschläger. On the derivation of reaction-diffusion equations as limit dynamics of systems of moderately interacting stochastic processes. Probability Theory and Related Fields, 82:565–586, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  38. K. Oelschläger and J. Starke. Many-particle models and reaction diffusion equations for chemical systems. Manuskript, 2004.

    Google Scholar 

  39. C. Reichert, J. Starke, and M. Eiswirth. Stochastic model of CO-oxidation on platinum surfaces and deterministic limit. Journal of Chemical Physics, 115(10):4829–4838, 2001.

    Article  Google Scholar 

  40. H. H. Rotermund. Imaging of dynamic processes on surfaces by light. Surface Science Reports, 29:265–364, 1997.

    Article  Google Scholar 

  41. H. H. Rotermund. Imaging pattern formation in surface reactions from ultra-high vacuum up to atmospheric pressures. Surface Science, 386:10–23, 1997.

    Article  Google Scholar 

  42. H. Spohn. Large Scale Dynamics of Interacting Particles. Springer-Verlag, 1991.

    Google Scholar 

  43. J. Starke, C. Reichert, M. Eiswirth, and H. H. Rotermund. Fluctuation-induced pattern formation in a surface reaction. in preparation, 2005.

    Google Scholar 

  44. Angela Stevens. The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems. SIAM J. Appl. Math., 61(1):183–212, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  45. Yu. Suchorski, J. Beben, R. Imbihl, E.W. James, D.-J. Liu, and J.W. Evans. Fluctuations and Critical Phenomena in Catalytic CO-Oxidation on Pt Facets. Physical Review B, 63(16):165417, 2001.

    Article  Google Scholar 

  46. Yu. Suchorski, J. Beben, E.W. James, J.W. Evans, and R. Imbihl. Fluctuation-induced transitions in a bistable surface reaction: Catalytic CO oxidation on a Pt field emitter tip. Phys. Rev. Letters, 82(9):1907–1910, 1999.

    Article  Google Scholar 

  47. S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag, Berlin, Heidelberg, New York, 1990.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Starke, J., Reichert, C., Eiswirth, M., Oelschläger, K. (2007). Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes. In: Jäger, W., Rannacher, R., Warnatz, J. (eds) Reactive Flows, Diffusion and Transport. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28396-6_13

Download citation

Publish with us

Policies and ethics