Skip to main content

Optimization of Reactive Flows in a Single Channel of a Catalytic Monolith: Conversion of Ethane to Ethylene

  • Conference paper
  • 1592 Accesses

Summary

We discuss the modeling, simulation, and, for the first time, optimization of the reactive flow in a channel of a catalytic monolith with detailed chemistry. We use boundary layer approximation to model the process and obtain a high dimensional PDE. We discuss numerical methods based on the efficient solution of high dimensional stiff DAEs arising from spatial semi-discretization and SQP method for the optimal control problem parameterized by the direct approach. We have investigated the application of conversion of ethane to ethylene which involves a complex reaction scheme for gas phase and surface chemistry. Our optimization results show that the maximum yield, an improvement of a factor of two, is achieved for temperatures around 1300 K.

This work has been supported by the German Research Foundation (DFG) through SFB 359 (Project B1) at the University of Heidelberg.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Bauer, H. G. Bock, and J. P. Schlöder. DAESOL-a BDF-code for the numerical solution of differential algebraic equations. Technical report, IWR, University of Heidelberg, 1999. SFB 359.

    Google Scholar 

  2. I. Bauer, F. Finocchi, W. Duschl, H. Gail, and J. Schlöder. Simulation of chemical reactions and dust destruction in protoplanetary accretion disks. Astronomy & Astrophys., 317:273–289, 1997.

    Google Scholar 

  3. A. Beretta, E. Ranzi, and P. Forzatti. Oxidative dehydrogenation of light paraffins in novel short contact time reactors. Experimental and theoretical investigation. Chemical Engineering Science, 56(3):779–787, 2001.

    Article  Google Scholar 

  4. C. Bischof, A. Carle, P. Hovland, P. Khademi, and A. Mauer. ADIFOR 2.0 User’s Guide, 1995.

    Google Scholar 

  5. H. G. Bock. Numerical treatment of inverse problems in chemical reaction kinetics. In K. H. Ebert, P. Deuflhard, and W. Jäger, editors, Modelling of Chemical Reaction System, volume 18 of Chemical Physics 18, pages 102–125. Springer, Heidelberg, 1981.

    Google Scholar 

  6. M. E. Coltrin, R. J. Kee, and J. A. Miller. A mathematical model of the coupled fluid mechanics and chemical kinetics in a chemical vapor deposition reactor. J. Electronchem. Soc, 131(2):425–434, 1984.

    Article  Google Scholar 

  7. A. R. Curtis, M. J. D. Powell, and J. K. Reid. On the estimation of sparse Jacobian matrices. J. Inst. Math. Appl., 13:117–119, 1974.

    MATH  Google Scholar 

  8. O. Deutschmann. DETCHEM-User manual, version 1.4. IWR, University of Heidelberg, 2000.

    Google Scholar 

  9. P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J. Opt., 12:979–1006, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Huff and L. D. Schmidt. Ethylene formation by oxidative dehydrogenation of ethane over monoliths at very short contact times. Journal of Physical Chemistry, 97(45):11815, 1993.

    Article  Google Scholar 

  11. V. Karbach. Validierung eines detaillierten Reaktionsmechanismus zur Oxidation von Kohlenwasserstoffen bei hohen Temperaturen. Diplomarbeit, Universität Heidelberg, 1997.

    Google Scholar 

  12. R. J. Kee, M. E. Coltrin, and P. Glarborg. Chemically Reacting Flow: Theory and Practice. Willey, 2003.

    Google Scholar 

  13. L. L. Raja, R. J. Kee, O. Deutschmann, J. Warnatz, and L. D. Schmidt. A critical evaluation of Navier-Stokes, boundary-layer, and plug-flow models of the flow and chemistry in a catalytic-combustion monolith. Catalysis Today, 59:47–60, 2000.

    Article  Google Scholar 

  14. W. E. Schiesser. The Numerical Method of Lines: Integration of Partial Differential Equations. Academic Press, San Diego, CA, 1991.

    MATH  Google Scholar 

  15. M. v. Schwerin, O. Deutschmann, and V. Schulz. Process optimization of reactives systems by partial reduced SQP methods. Computers and Chemical Engineering, 24:89–97, 2000.

    Article  Google Scholar 

  16. J. Warnatz, R. Dibble, and U. Maas. Combustion, Physical and Chemcial Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. Springer-Verlag, New York, 1996.

    Google Scholar 

  17. D. K. Zerkle, M. D. Allendorf, M. Wolf, and O. Deutschman. Understanding homogeneous and heterogeneous contributions to the partial oxidation of ethane in a short contact time reactor. J. Catal., 196:18–39, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bock, H.G. et al. (2007). Optimization of Reactive Flows in a Single Channel of a Catalytic Monolith: Conversion of Ethane to Ethylene. In: Jäger, W., Rannacher, R., Warnatz, J. (eds) Reactive Flows, Diffusion and Transport. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28396-6_11

Download citation

Publish with us

Policies and ethics